Bei Rotlicht 21.09.2015, 07:45 Uhr

Erste Tarnkappe, die Gegenstände verschwinden lässt

Das winzige Metamaterial aus Gold könnte noch eine große Karriere machen. US-Forschern haben das kleine Plättchen unsichtbar erscheinen lassen. Es könnte das Geheimnis verraten, wie man eine richtige Tarnkappe bauen kann. Bei Rotlicht funktioniert die Sache bereits.

US-Forscher haben aus Gold ein Metamaterial entwickelt, das Licht nicht mehr reflektiert und damit unsichtbar macht. Wenn man damit einen Menschen abdeckt, könnte auch der unsichtbar werden.

US-Forscher haben aus Gold ein Metamaterial entwickelt, das Licht nicht mehr reflektiert und damit unsichtbar macht. Wenn man damit einen Menschen abdeckt, könnte auch der unsichtbar werden.

Foto: Universität Berkeley

Manch einer würde gern „im Boden versinken“, wenn ihm was peinlich ist. Besser noch wäre er mit einer Tarnkappe bedient, wie sie in Märchen vorkommt. Doch so etwas gibt es nicht. Glauben die meisten jedenfalls. „Falsch“, sagen jetzt die Forscher der Universität von Kalifornien in Berkeley.

Einen Menschen kann das Team um Xiang Zhang, Direktor am Materialforschungslabor der Hochschule, zwar nicht unsichtbar machen. Wohl aber ein Plättchen, das allerdings wegen seiner Winzigkeit ohnehin kaum zu sehen ist. Es misst nicht einmal einen halben Millimeter. Aber jeder fängt ja mal klein an, auch die Forscher in Berkeley. Mit der Tarnkappe aus Kalifornien kann zumindest das kleine Plättchen vollends verschwinden. Vorausgesetzt, es wird von rotem Licht angestrahlt und bewegt sich nicht. Zu viele Einschränkungen für eine echte Tarnkappe.

Top Stellenangebote

Zur Jobbörse
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
MB Global Engineering GmbH & Co. KG-Firmenlogo
Projektleiter Elektrotechnik (m/w/d) MB Global Engineering GmbH & Co. KG
Darmstadt Zum Job 
Nitto Advanced Film Gronau GmbH-Firmenlogo
Projektingenieur (m/w/d) im Bereich Maschinen- und Anlagentechnik Nitto Advanced Film Gronau GmbH
Städtische Wohnungsgesellschaft Eisenach mbH-Firmenlogo
Bauingenieur Hochbau / Architekt (m/w/d) Städtische Wohnungsgesellschaft Eisenach mbH
Eisenach Zum Job 
IT-Consult Halle GmbH-Firmenlogo
Trainee SAP HCM / Personalwirtschaft (m/w/d) IT-Consult Halle GmbH
Halle (Saale) Zum Job 
Regierungspräsidium Freiburg-Firmenlogo
Bachelor / Dipl. Ing. (FH) (w/m/d) der Fachrichtung Wasserwirtschaft, Umwelt, Landespflege oder vergleichbar Regierungspräsidium Freiburg
Freiburg im Breisgau Zum Job 
Dorsch Gruppe-Firmenlogo
Projektleiter (m/w/d) Tragwerksplanung mit Perspektive auf Fachbereichsleitung Dorsch Gruppe
Wiesbaden Zum Job 
Clariant SE-Firmenlogo
Techniker* für Automatisierungstechnik Clariant SE
Oberhausen Zum Job 
Die Autobahn GmbH des Bundes, Niederlassung Südbayern-Firmenlogo
Projektingenieur für Brückenbau / Tunnelbau / Ingenieurbau (w/m/d) Die Autobahn GmbH des Bundes, Niederlassung Südbayern
München Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieurin oder Bauingenieur in der Schlichtungsstelle (w/m/d) Die Autobahn GmbH des Bundes
Hannover Zum Job 
Big Dutchman International GmbH-Firmenlogo
Ingenieur / Techniker / Meister (m/w/d) Big Dutchman International GmbH
BOGE KOMPRESSOREN Otto Boge GmbH & Co. KG-Firmenlogo
Entwickler / Konstrukteur für die Verdichterentwicklung (m/w/x) BOGE KOMPRESSOREN Otto Boge GmbH & Co. KG
Großenhain Zum Job 
Griesemann Gruppe-Firmenlogo
Ingenieur Verfahrenstechnik / Prozessingenieur (m/w/d) Griesemann Gruppe
Wesseling, Köln Zum Job 
Energieversorgung Halle Netz GmbH-Firmenlogo
Fachingenieur Netzbetrieb Strom (m/w/d) Energieversorgung Halle Netz GmbH
Halle (Saale) Zum Job 
über ifp | Executive Search. Management Diagnostik.-Firmenlogo
COO (m/w/d) über ifp | Executive Search. Management Diagnostik.
Norddeutschland Zum Job 
Hamburger Wasser-Firmenlogo
Ingenieur/Referent (m/w/d) Vergabe Ingenieur-/ Bauleistungen Hamburger Wasser
Hamburg Zum Job 
Möller Medical GmbH-Firmenlogo
Industrial Engineer (m/w/d) Möller Medical GmbH
THU Technische Hochschule Ulm-Firmenlogo
W2-Professur "Elektrifizierte Fahrzeugantriebssysteme" THU Technische Hochschule Ulm
MÜNZING CHEMIE GmbH-Firmenlogo
Prozessoptimierer (m/w/d) für die chemische Industrie MÜNZING CHEMIE GmbH
Elsteraue Zum Job 
Energieversorgung Halle Netz GmbH-Firmenlogo
Projektingenieur - Fernwärme/Energietechnik (m/w/d) Energieversorgung Halle Netz GmbH
Halle (Saale) Zum Job 

Tarnkappe für größere Objekte geplant

Aber das kann ja noch werden, glauben die Forscher, und hoffen, künftig auch größere Gegenstände verbergen zu könnrn. Ihre Tarnkappe besteht aus so genanntem Metamaterial, einem synthetische Werkstoff mit Eigenschaften, die nicht in der Natur vorkommen.

Die Materialforscher Yuan Wang (v.l.), Zi Jing Wong und Xiang Zhang haben das ultradünne Metamaterial entwickelt.

Die Materialforscher Yuan Wang (v.l.), Zi Jing Wong und Xiang Zhang haben das ultradünne Metamaterial entwickelt.

Quelle: Roy Kaltschmidt/Universität Berkeley

Das Material hat Oberflächenstrukturen, die kleiner sind als die Wellenlänge von Licht, die je nach Farbe bei einigen 100 Nanometern liegt. Diese Strukturen verhindern, dass auftreffendes Licht wie üblich reflektiert oder gestreut wird. Dadurch wird das Objekt sichtbar. Metamaterialien, die besondere optische Eigenschaften haben, lenken das Licht gewissermaßen um sich herum. Es gibt keine optische Interaktion, sodass das Objekt nicht zu sehen ist.

Premiere bei sichtbarem Licht

Xiang und sein Team stellten die Struktur, die das Licht irritiert, aus nanometergroßen Goldtröpfchen her, die sie auf einer extrem dünnen Haut platzierten. Das Gold sorgt dafür, dass es keine Reflexe gibt, wie sie in der Natur vorkommen. Das Objekt bleibt unsichtbar.

Das Metamaterial ist winzig klein und verschwindet bei rotem Licht gänzlich.

Das Metamaterial ist winzig klein und verschwindet bei rotem Licht gänzlich.

Quelle: Forschungsgruppe Xiang Zhang/Berkley Universität

„Es ist das erste Mal, dass ein beliebig geformtes Objekt im sichtbaren Licht nicht mehr zu sehen ist“, sagt Xiang. Tatsächlich spielen bei anderen Tarnkappenentwicklungen wie etwa der von Forschern des Karlsruher Instituts für Technologie die äußeren Umstände – in diesem Fall ein leichter Nebel – eine Rolle. Andere funktionieren nur im Mikrowellenbereich.

Zehn Jahre lang haben Xiang und sein Team Metamaterialien erforscht, die die optischen Regeln der Natur zu brechen vermögen. Jetzt konnten sie den ersten Durchbruch melden. Sie veröffentlichten ihre Forschungsergebnisse in der Wissenschaftszeitschrift Science.

 

Ein Beitrag von:

  • Wolfgang Kempkens

    Wolfgang Kempkens studierte an der RWTH Aachen Elektrotechnik und schloss mit dem Diplom ab. Er arbeitete bei einer Tageszeitung und einem Magazin, ehe er sich als freier Journalist etablierte. Er beschäftigt sich vor allem mit Umwelt-, Energie- und Technikthemen.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.