Neue Wellen-Formel 09.03.2016, 07:01 Uhr

Schallwellen aus der Tiefsee können Tsunamis vorhersagen

Amerikanische Wissenschaftler haben einen bisher nicht vermuteten Zusammenhang zwischen Oberflächen- und Tiefseewellen entdeckt. Diesen wollen sie nutzen, um mit Hilfe von Schallwellen aus der Tiefsee Tsunamis frühzeitig erkennen zu können.

Riesige Wellengebirge im Meer der Galapagos Inseln: US-Forscher haben festgestellt, dass es einen Zusammenhang zwischen Wellen an der Meeresoberfläche und der Tiefsee gibt. Dadurch könnten sich Tsunamis besser vorhersagen lassen.

Riesige Wellengebirge im Meer der Galapagos Inseln: US-Forscher haben festgestellt, dass es einen Zusammenhang zwischen Wellen an der Meeresoberfläche und der Tiefsee gibt. Dadurch könnten sich Tsunamis besser vorhersagen lassen.

Foto: ESA

Die akustischen Gravitationswellen, um die es hier geht, sind nicht wie bei den kürzlich nachgewiesenen Einstein‘schen Gravitationswellen im All, sondern im Meer zu finden. Ausgelöst werden sie meist durch gewaltige Ereignisse in den Ozeanen wie Unterwasserbeben, Explosionen, Erdrutsche oder sogar Meteoriteneinschläge. Dann wandern die entstandenen Wellen mit Schallgeschwindigkeit um die Erde und wirbeln dabei auch das Wasser inklusive Nährstoffe, Salze und andere Partikel durcheinander.

Bisher glaubte man, dass solche Gravitationswellen in der Tiefsee mit den Oberflächenwellen, die wir etwa von einem Strand oder Schiff aus sehen können, in keinerlei Verbindung stehen.

Oberflächenwellen können tiefer liegende Schallwellen auslösen

Wissenschaftler am Mathematischen Institut des Massachusetts Institute of Technology (MIT) haben diese Annahme jetzt widerlegt. Das Team um Assistenzprofessor Usama Kadri hat die wesentlich langsameren Oberflächenwellen als weiteren möglichen Auslöser für die schnellen Akustikwellen in der Tiefsee erkannt und ihre Entdeckung im Journal of Fluid Mechanics veröffentlicht.

MIT-Forscher arbeiten an einem System, das die akustischen Gravitationswellen, die einem Tsunami vorauseilen und zehn Mal so schnell sind wie die eigentliche Welle selbst, rechtzeitig erkennt. 

MIT-Forscher arbeiten an einem System, das die akustischen Gravitationswellen, die einem Tsunami vorauseilen und zehn Mal so schnell sind wie die eigentliche Welle selbst, rechtzeitig erkennt.

Quelle: Christine Daniloff/MIT

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
OCS Optical Control Systems GmbH-Firmenlogo
Entwicklungsingenieur Elektrotechnik (m/w/d) OCS Optical Control Systems GmbH
K. A. Schmersal GmbH & Co. KG-Firmenlogo
Systemingenieur Strategic Product Development (m/w/d) K. A. Schmersal GmbH & Co. KG
Wuppertal Zum Job 
ROTHENBERGER Werkzeuge GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) für Produktdesign und Produktüberführung ROTHENBERGER Werkzeuge GmbH
Kelkheim Zum Job 
Menlo Systems GmbH-Firmenlogo
Development Engineer (m/f/d) for photonic integrated circuitry (PIC) Testing & Packaging Menlo Systems GmbH
Planegg Zum Job 
Leibniz-Institut für Plasmaforschung und Technologie e.V. (INP)-Firmenlogo
Ingenieur*in (w/m/d) Verfahrenstechnik für innovative Wasserstofftechnologien Leibniz-Institut für Plasmaforschung und Technologie e.V. (INP)
Greifswald Zum Job 
Flowserve Corporation-Firmenlogo
Trainee Operations (m/w/d) mit dem Schwerpunkt Prozessoptimierung und Digitalisierung Flowserve Corporation
Dortmund Zum Job 
FEIG ELECTRONIC GmbH-Firmenlogo
(Senior-) Hardwareentwickler*in - Schaltungstechnik und Mikrocontroller, Sensorik FEIG ELECTRONIC GmbH
Weilburg Zum Job 
Ruland Engineering & Consulting GmbH-Firmenlogo
Leiter (m/w/d) verfahrenstechnische Fertigung Ruland Engineering & Consulting GmbH
Neustadt an der Weinstraße Zum Job 
WIRTGEN GROUP Branch of John Deere GmbH & Co. KG-Firmenlogo
Projektleiter (m/w/d) mit dem Schwerpunkt R&D und Produktion WIRTGEN GROUP Branch of John Deere GmbH & Co. KG
Windhagen Zum Job 
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
Schneider GmbH & Co. KG-Firmenlogo
Konstrukteur Brillenoptik (m/w/d) Schneider GmbH & Co. KG
Fronhausen Zum Job 
Schneider GmbH & Co. KG-Firmenlogo
Entwicklungsingenieur Lasertechnologie (m/w/d) Schneider GmbH & Co. KG
Fronhausen Zum Job 
Tesla Automation GmbH-Firmenlogo
(Senior) Entwicklungsingenieur (m/w/d) Tesla Automation GmbH
über aeconsult-Firmenlogo
(Bereichs-)Leiter Produktion (m/w/d) über aeconsult
zentral in Norddeutschland Zum Job 
CoorsTek GmbH-Firmenlogo
Prozessingenieur / Ingenieur (m/w/d) Produktion CoorsTek GmbH
Mönchengladbach Zum Job 
A. Menarini Research & Business Service GmbH-Firmenlogo
Junior-Ingenieur für Infrastruktur und Herstellanlagen (m/w/d) A. Menarini Research & Business Service GmbH
über RSP Advice Unternehmensberatung-Firmenlogo
Technische Leitung (m/w/d) über RSP Advice Unternehmensberatung
Schleifring GmbH-Firmenlogo
Testingenieur für die Produktqualifikation (m/w/d) Schleifring GmbH
Fürstenfeldbruck Zum Job 
DTU Nanolab-Firmenlogo
Chief Equipment Engineer at the National Center for Nanofabrication and Characterization (f/m/d) DTU Nanolab
Lyngby (Dänemark) Zum Job 
Hochschule Düsseldorf-Firmenlogo
W2-Professur "Nachhaltige Energiesysteme und Energieeffizienz" Hochschule Düsseldorf
Düsseldorf Zum Job 

Nach der neuen Theorie können zwei Oberflächenwellen, die sich mit ähnlicher Frequenz aufeinander zubewegen, bis zu 95 Prozent ihrer ursprünglichen Energie an eine Schallwelle weitergeben, die sich weitaus schneller und tiefer bewegt. Diese Interaktion zwischen den verschiedenen Wellenarten würde man etwa an Kontinentalplatten erwarten, wo Tiefsee und flache Küste aufeinandertreffen und sich die Oberflächen-Wellen an den Platten brechen. Diese Kraft, glaubt Professor Kadri, könne eine wichtige Rolle für marine Lebensformen spielen, denn so würden Wassermassen umgewälzt und beispielsweise Temperaturunterschiede ausgeglichen.

An der Oberfläche spielt Gravitation eine Rolle, in der Tiefsee Kompression

Bisher sei man deshalb nicht auf die Idee gekommen, dass es eine Beziehung zwischen Oberflächenwellen und Schallwellen in der Tiefsee geben könne, weil die beiden Wellenarten sehr unterschiedliche Eigenschaften besitzen, sagt Kadri. Für eine Oberflächenwelle ist die Gravitation die entscheidende Kraft, während dies für eine Schallwelle kaum eine Rolle spielt.

Die akustische Welle, die eine Druckwelle ist, wandert durch das Wasser, indem dieses leicht komprimiert wird. Die beiden bisher vernachlässigten Komponenten der Schwerkraft und der Verdichtung haben die MIT-Wissenschaftler nun in ihre neue Wellenformel einbezogen.

Riesige Wellenbewegungen bis in einer Tiefe von 200 m im südchinesischen Meer, aufgenommen von einem Satelliten. Die orange eingefärbten Schichten bewegen sich aufwärts, die blauen abwärts.

Riesige Wellenbewegungen bis in einer Tiefe von 200 m im südchinesischen Meer, aufgenommen von einem Satelliten. Die orange eingefärbten Schichten bewegen sich aufwärts, die blauen abwärts.

Quelle: MIT

„Die Theorie besagt bisher, dass zwei Oberflächenwellen, die sich aufeinander zubewegen und einander passieren, keinerlei Form von Energie austauschen“, sagt Kadri. Die Realität sei jedoch deutlich komplexer. Tatsächlich finde ein Energieaustausch statt, so dass durch die Interaktion der Oberflächenwellen eine akustische Welle, die völlig andere Eigenschaften habe, in der Tiefsee ausgelöst werden könne. „Das bedeutet auch, dass einiges von der Energie der Atmosphäre, etwa vom Wind und von der Sonne, in Form von Schallwellen durch die Ozeane wandert.“

Ein Tsunami-Frühwarnsystem soll entwickelt werden

Dieses neue Verständnis der Zusammenhänge will Kadri nun für die frühe Erkennung von Tsunamis anwenden. Gemeinsam mit dem Ozeanografischen Institut in Woods Hole in Massachusetts soll ein System entwickelt werden, dass die akustischen Gravitationswellen, die einem Tsunami vorauseilen und zehn Mal so schnell sind wie die eigentliche Welle selbst, rechtzeitig erkennt.

Mit einer ganz anderen Technik haben deutsche Ingenieure ein Frühwarnsystem für Tsunamis entwickelt. Es arbeitet bereits in Indonesien.

 

Ein Beitrag von:

  • Gudrun von Schoenebeck

    Gudrun von Schoenebeck

    Gudrun von Schoenebeck ist seit 2001 journalistisch unterwegs in Print- und Online-Medien. Neben Architektur, Kunst und Design hat sie sich vor allem das spannende Gebiet der Raumfahrt erschlossen.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.