Strom aus Hitze und Kälte 26.09.2013, 13:15 Uhr

Magnetische Atome in Kristallkäfigen machen Power

Ein neues thermoelektrisches Material sorgt in der Fachwelt für Staunen: Dank eines überraschenden physikalischen Effekts erzeugt es besonders hohe Spannung. Industrieunternehmen könnten es zukünftig einsetzen, um aus Abwärme Energie zurückzugewinnen. 

Mit einem speziellen Kristallzuchtverfahren in einem Spiegelofen ist es Forschern der TU Wien erstmals gelungen, Clathrate aus Barium, Silizium und Gold herzustellen, die magnetische Cer-Atome enthalten.

Mit einem speziellen Kristallzuchtverfahren in einem Spiegelofen ist es Forschern der TU Wien erstmals gelungen, Clathrate aus Barium, Silizium und Gold herzustellen, die magnetische Cer-Atome enthalten.

Foto: TU Wien

In Zeiten steigender Strompreise ist es besonders für Großverbraucher wie Industrieunternehmen wichtig, Energie zu sparen. Eine Möglichkeit ist es, Energie wieder einzufangen, die Maschinen in Form von Wärme an ihre Umgebung abgeben. Um dies zu ermöglichen, forschen Wissenschaftler seit längerem an thermoelektronischen Materialien, die sie zwischen heißen und kalten Objekten platzieren. „Auf der heißen Seite des Materials bewegen sich die Elektronen stärker als auf der kalten, wodurch sie zur kalten Seite diffundieren“, erklärt Professorin Silke Bühler-Paschen vom Institut für Festkörperphysik der Technischen Universität Wien. „So entsteht zwischen den beiden Seiten des Thermoelektrikums eine elektrische Spannung.“

Das schien bislang unmöglich: magnetische Atome in Kristallkäfigen

Den Wissenschaftlern ist es nun gelungen, eine effektivere Klasse solcher Materialien herzustellen. Zum Hintergrund: Es kommen in dieser Forschung schon seit längerem käfigartige Kristallverbindungen namens Clathrate zum Einsatz, in die sich Atome einsperren lassen.

Top Stellenangebote

Zur Jobbörse
embeX GmbH-Firmenlogo
Systemingenieur / Systemarchitekt Embedded Software (m/w/d) embeX GmbH
Airbus-Firmenlogo
Program Certification Engineering (d/m/f) Airbus
Manching Zum Job 
embeX GmbH-Firmenlogo
Gruppenleiter Softwareentwicklung (m/w/d) embeX GmbH
NSM Magnettechnik GmbH-Firmenlogo
Vertriebsingenieur (m/w/d) NSM Magnettechnik GmbH
embeX GmbH-Firmenlogo
Systemingenieur Mechatronik / Leistungselektronik (m/w/d) embeX GmbH
NSM Magnettechnik GmbH-Firmenlogo
SPS-Programmierer / Roboter-Programmierer (m/w/d) NSM Magnettechnik GmbH
NSM Magnettechnik GmbH-Firmenlogo
E-Planer (m/w/d) NSM Magnettechnik GmbH
PEC-Firmenlogo
Service-Ingenieur (m/w/d) PEC
Augsburg Zum Job 
Open Grid Europe GmbH-Firmenlogo
Bauleiter für Rohrleitungsbau (m/w/d) Open Grid Europe GmbH
e:fs TechHub GmbH-Firmenlogo
Ingenieur (m/w/d) Funktionsentwicklung Fahrdynamik Momentenverteilung E³ e:fs TechHub GmbH
Ingolstadt Zum Job 
PEC-Firmenlogo
Verwaltungs- und Rekrutierungsbeauftragte/r PEC
Augsburg Zum Job 
Stadtwerke Augsburg-Firmenlogo
Projektingenieur (m/w/d) Stadtwerke Augsburg
Augsburg Zum Job 
über MINT Solutions GmbH-Firmenlogo
Embedded Linux Senior Software Engineer (m/w/d) über MINT Solutions GmbH
keine Angabe Zum Job 
über MINT Solutions GmbH-Firmenlogo
Senior Data Engineer in Full Remote Anstellung (m/w/d) über MINT Solutions GmbH
Home-Office Zum Job 
ABB AG-Firmenlogo
(Senior) Scientist / Electrical Engineer - Electromechanical Actuation Technologies ABB AG
Ladenburg, Mannheim Zum Job 
über MINT Solutions GmbH-Firmenlogo
Senior Software Engineer Java für innovative Energielösungen (m/w/d) über MINT Solutions GmbH
keine Angabe Zum Job 
TOPAS Advanced Polymers GmbH-Firmenlogo
Verfahrensingenieur/-in (w/m/d) TOPAS Advanced Polymers GmbH
Oberhausen Zum Job 
Stadtwerke Tübingen-Firmenlogo
Junior-Ingenieur (m/w/d) Stromnetz Stadtwerke Tübingen
Tübingen Zum Job 
Rheinbahn AG-Firmenlogo
Projektingenieur*in (w/m/d) Fachgebiet Verkehrsinfrastruktur Rheinbahn AG
Düsseldorf Zum Job 
TOPAS Advanced Polymers GmbH-Firmenlogo
Verfahrensingenieur/-in (w/m/d) TOPAS Advanced Polymers GmbH
Oberhausen Zum Job 
Clathrate sind Kristallgitter, die für einzelne Atome zum Käfig werden. Ihre Atome und die des eingesperrten, magnetischen Cer-Gastatoms sind quantenmechanisch eng verbunden. Die Gast-Atome rütteln quasi an ihrem Käfig. Dadurch erhält Material besonders gute thermoelektrische Eigenschaften. 

Clathrate sind Kristallgitter, die für einzelne Atome zum Käfig werden. Ihre Atome und die des eingesperrten, magnetischen Cer-Gastatoms sind quantenmechanisch eng verbunden. Die Gast-Atome rütteln quasi an ihrem Käfig. Dadurch erhält Material besonders gute thermoelektrische Eigenschaften.

Quelle: TU Wien

Je nachdem, um welche Atome es sich handelt, verändern sich die Materialeigenschaften. Experten vermuteten bereits seit einiger Zeit, dass besondere Wechselwirkungen zu erwarten sind, wenn sie magnetische Atome wie das Selten-Erd-Metall Cer in solche Strukturen einbauen könnten. Obwohl das bislang unmöglich schien, ist es jetzt gelungen. Mit Hilfe eines Kristallzuchtverfahrens in einem Spiegelofen hat es Professor Andrey Prokofiev von der TU Wien geschafft, Clathrate aus Barium, Silizium und Gold herzustellen, die Cer-Atome enthalten.

Neues Material erzeugt um 50 Prozent höhere Spannung

Nun wollten die Forscher prüfen, ob sich das neue Material als Thermoelektrikum eignet. Und sie wurden überrascht: Experimente zeigten, dass man im Vergleich zu herkömmlichen Materialen durch die eingesperrten Cer-Atome eine um 50 Prozent höhere Spannung erreichen kann. Zudem ist die Wärmeleitfähigkeit der Clathrate extrem gering. Eine weitere tolle Eigenschaft. Denn ansonsten würden sich die unterschiedlichen Temperaturen auf beiden Seiten des Materials rasch angleichen und die elektrische Spannung würde verschwinden.

„Wir beobachten den heißesten Kondo-Effekt der Welt“

„Die Ursache für die außergewöhnlich guten Materialeigenschaften dürfte in einer bestimmten Art von Elektronen-Korrelation liegen – dem sogenannten Kondo-Effekt“, vermutet Bühler-Paschen.

Die Forscher der Stunde: Prof. Silke Bühler-Paschen und Prof. Andrey Prokofiev. 

Die Forscher der Stunde: Prof. Silke Bühler-Paschen und Prof. Andrey Prokofiev.

Quelle: TU Wien

Die Elektronen der Cer-Atome sind mit den Kristallgitter-Atomen quantenmechanisch eng verbunden. Diesen Kondo-Effekt kannten die Forscher bislang eigentlich nur aus der Tieftemperaturphysik in der Gegend des absoluten Nullpunkts. Doch überraschenderweise spielen diese quantenphysikalischen Korrelationen im neuen Clathrat-Material auch bei hunderten Grad Celsius eine Rolle. Bühler-Paschen: „Das Rütteln des eingesperrten Cer-Atoms wird bei hoher Temperatur stärker. Und es ist genau dieses Rütteln, das den Kondo-Effekt bei hohen Temperaturen stabilisiert. Wir beobachten den heißesten Kondo-Effekt der Welt.“

Nun machen Forscher das Material fit für die industrielle Nutzung

Im nächsten Schritt wird das Forscherteam versuchen, das Material für die Industrie interessant zu machen. Dabei will man das Gold, das in den Clathraten zum Einsatz kommt, durch billigere Metalle wie Kupfer ersetzen. Und die Aufgabe des Gastatoms im Käfig könnte zukünftig nicht mehr Cer übernehmen, sondern eine billige Mischung aus Selten-Erd-Elementen. Die Hoffnung sei realistisch, so die Wissenschaftler, dass solche maßgeschneiderten Clathrate zukünftig in der Industrie zum Einsatz kommen, um aus Abwärme elektrische Energie zurückzugewinnen.

 

Ein Beitrag von:

  • Patrick Schroeder

    Patrick Schroeder arbeitet als freiberuflicher Journalist für Zeitschriften und Onlinemagazine wie die VDI Nachrichten und Ingenieur.de.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.