Neues Hydrogel entwickelt 09.03.2017, 08:29 Uhr

Fast wie Glas: So steif kann Wasser werden

Es grenzt an Zauberei: die Herstellung eines neuen Materials, das zu 90 % aus Wasser besteht und trotzdem ultrasteif und extrem zäh ist. Dieses Hydrogel könnte künftig als druckstabile Trennmembran in der Mehrwasserentsalzung oder als hochporöses Elektrodenmaterial für Batterien oder Brennstoffzellen zum Einsatz kommen. 

Durch eine besondere Nanostruktur haben Dortmunder Forscher es jetzt geschafft, ein glasartiges Material herzustellen, das zu 90 % aus Wasser besteht, sich nur mit Kraft verbiegen lässt und dabei noch stark dehnbar ist. So kann es großem Druck standhalten, ohne zu brechen.

Durch eine besondere Nanostruktur haben Dortmunder Forscher es jetzt geschafft, ein glasartiges Material herzustellen, das zu 90 % aus Wasser besteht, sich nur mit Kraft verbiegen lässt und dabei noch stark dehnbar ist. So kann es großem Druck standhalten, ohne zu brechen.

Foto: Nikolas Golsch/TU Dortmund

Wer steht hinter der Erfindung? Zunächst einmal Professor Jörg Tiller und Nicolas Rauner von der Fakultät Bio- und Chemieingenieurwesen der TU Dortmund. Siehatten sich ein ambitioniertes Ziel gesetzt, wollten das erste steife Hydrogel überhaupt entwickeln. Und sehr zäh sollte es obendrein sein. Dabei ist ein Hydrogel zunächst einmal ein in Wasser gequollenes polymeres Netzwerk oder einfach ausgedrückt: ein Material, das eigentlich fast nur aus Wasser besteht.

Dem Wackelpudding das Wackeln ausgetrieben

Ein aus dem Alltag bekanntes Hydrogel ist die Götterspeise. Doch nicht umsonst nennt man sie auch „Wackelpudding“: Denn sie ist weder steif noch zäh, mit dem Löffel kann man sie leicht abtrennen. Als steif wird ein Material bezeichnet, das sich schwer verbiegen lässt, und als zäh, wenn man es stark verbiegen kann, bevor es zerbricht.

Top Stellenangebote

Zur Jobbörse
Kliniken Maria Hilf-Firmenlogo
Techniker / Ingenieur / Master / Bachelor (w/m/d) Bauwesen, Versorgungstechnik (H/L/S), Elektrotechnik als Projektmanager für den Geschäftsbereich Technik-, Bau- und Liegenschaftsmanagement Kliniken Maria Hilf
Mönchengladbach Zum Job 
Stadtwerke München GmbH-Firmenlogo
Bauoberleitung für Neubauprojekte der Gleisanlagen der Münchner Straßenbahn (m/w/d) Stadtwerke München GmbH
München Zum Job 
Stadtwerke München GmbH-Firmenlogo
Abwicklungsleiter*in M-Solar (m/w/d) Stadtwerke München GmbH
München Zum Job 
Hamburger Energiewerke-Firmenlogo
Projektleiter Ingenieur Fernwärmeleitungsbau (w/m/d) Hamburger Energiewerke
Hamburg Zum Job 
Hamburger Energiewerke-Firmenlogo
Projektmanager Konzeption Photovoltaik (w/m/d) Hamburger Energiewerke
Hamburg Zum Job 
Hamburger Energiewerke-Firmenlogo
Projektleiter (w/m/d) Anlagenbau Energietechnik Hamburger Energiewerke
Hamburg Zum Job 
Stadtwerke München GmbH-Firmenlogo
Abwicklungsleiter*in M-Solar (m/w/d) Stadtwerke München GmbH
München Zum Job 
LBD-Beratungsgesellschaft mbH-Firmenlogo
Senior-Berater:in für die Wärmewende LBD-Beratungsgesellschaft mbH
Stadt Gifhorn-Firmenlogo
Technische Sachbearbeitung (m/w/d) als Dipl.-Ing. Fachrichtung Tiefbau (FH/Bachelor) Stadt Gifhorn
Gifhorn Zum Job 
SALT AND PEPPER Technology-Firmenlogo
Hardware-Entwickler (m/w/d) PCB Design SALT AND PEPPER Technology
Hamburg Zum Job 
SALT AND PEPPER Technology-Firmenlogo
Technischer Projektmanager (m/w/d) im Entwicklungsumfeld SALT AND PEPPER Technology
Hamburg Zum Job 
SALT AND PEPPER Technology-Firmenlogo
C++ Softwareentwickler (m/w/d) Medizinische Messtechnik SALT AND PEPPER Technology
Hamburg Zum Job 
Fraunhofer-Institut für Windenergiesysteme IWES-Firmenlogo
Elektrotechniker*in Prüfstand, Elektrische Messtechnik und Mittelspannung Fraunhofer-Institut für Windenergiesysteme IWES
Bremerhaven Zum Job 
Landkreis Grafschaft Bentheim-Firmenlogo
Ingenieur:in (Dipl.-Ing. FH bzw. BA)|im Bereich Landschaftsplanung und Naturschutz Landkreis Grafschaft Bentheim
Bad Bentheim Zum Job 
Excellence AG-Firmenlogo
Projektleiter (w/m/d) Elektrische Energieversorgungsanlagen Excellence AG
Hamburg Zum Job 
Excellence AG-Firmenlogo
Bauingenieur Erneuerbare Energien (m/w/d) Excellence AG
Hamburg Zum Job 
Excellence AG-Firmenlogo
Softwarekoordinator (m/w/d) Excellence AG
DEUTZ AG-Firmenlogo
Projektingenieur / RAMS Ingenieur (m/w/d) im Reklamationsmanagement DEUTZ AG
Bundesamt für Bauwesen und Raumordnung-Firmenlogo
Bauingenieurin / Bauingenieur - Tiefbau (w/m/d) als Teilprojektleitung / Projektsachbearbeitung Bundesamt für Bauwesen und Raumordnung
WISAG Elektrotechnik Berlin-Brandenburg GmbH & Co. KG-Firmenlogo
Elektroingenieur | Meister als Planer (m/w/d) für Großanlagen WISAG Elektrotechnik Berlin-Brandenburg GmbH & Co. KG
Professor Jörg Tiller im Labor: Gemeinsam mit weiteren Forscher der TU Dortmund ist es ihm gelungen, das erste steife Hydrogel zu entwickeln. 

Professor Jörg Tiller im Labor: Gemeinsam mit weiteren Forscher der TU Dortmund ist es ihm gelungen, das erste steife Hydrogel zu entwickeln.

Quelle: Nikolas Golsch/TU Dortmund

Bei ihrem Unterfangen haben sich die Dortmunder Forscher zunächst von der Natur inspirieren lassen, genauer gesagt von der Biomineralisation. Bei diesem biochemischen Prozess verbinden sich Minerale mit Biomolekülen. Biomoleküle oder Naturstoffe werden von Organismen gebildet, um biologische Funktionen zu erfüllen. Biomineralien kommen in Zähnen und Knochen, in Schneckenhäusern, Muschelschalen und Krabbenpanzern oder in Kieselalgen vor. Die extrem feinen Strukturen der Biominerale, ihr ausgefeilter Aufbau und ihre besonderen Eigenschaften liefern Forschern schon lange immer wieder Ansatzpunkte für die Entwicklung künstlicher Werkstoffe.

Auf die Nanostruktur kommt es an

Ein solcher künstlicher Werkstoff ist das Hydrogel, das Tiller und Rauner entwickelt haben und in der Fachzeitschrift Nature beschreiben. Fünf Jahre hat es gedauert, bis sie es schafften, aus einem „Wackelpudding“ ein glasartiges Material zu kreieren, das hauptsächlich aus Wasser besteht, sich nur mit Kraft verbiegen lässt und dabei noch stark dehnbar ist. So kann es großem Druck standhalten, ohne zu brechen.

Der Trick: Dem künstlichen Hydrogel gaben die Forscher mittels Biomineralisation eine besondere Nanostruktur. Enzyme, sogenannte Phosphatasen, die durch Wasseranlagerung (Hydrolyse) aus Phosphorsäureestern oder Polyphosphaten Phosphorsäure abspalten, liegen extrem fein verteilt im Material vor. Sie lösen den Strukturbildungsprozess aus, bei dem die Mineralisation direkt im Material geschieht. So entsteht eine feste und wohlgeordnete Calciumphosphat-Nanostruktur, die ein stabiles Netzwerk bildet und für die besonderen Eigenschaften des ersten steifen Hydrogels verantwortlich ist.

Viel Arbeit am Elektronenmikroskop

Die aufwendige Aufklärung der Strukturen gelang dabei Monika Meuris. Sie leitet das Zentrum für Elektronenmikroskopie und Materialforschung (ZEMM) der TU Dortmund. In Zukunft wollen die Forscher diese neue Art der Materialherstellung für den Nachbau natürlicher Verbundmaterialien wie Muscheln oder Knochen nutzen. Als konkrete Anwendungsbeispiele werden druckstabile Trennmembranen in der Mehrwasserentsalzung oder hochporöses Elektrodenmaterial für Batterien oder genannt.

Forscher haben die Tragfähigkeit dieses Designerstuhls verbessert. Dabei diente die Struktur von Knochen und Kieselalgen als Vorbild.

Forscher haben die Tragfähigkeit dieses Designerstuhls verbessert. Dabei diente die Struktur von Knochen und Kieselalgen als Vorbild.

Quelle: Anke Bernotat/Folkwang Universität der Künste

Einen freischwingenden Stuhl namens Cellular Loop, dessen innere Struktur von Zähnen und Knochen inspiriert worden ist, hat ein Forscherverbund präsentiert. Er besitzt die dreifache Festigkeit bei gleichem Materialeinsatz.

 

Ein Beitrag von:

  • Martina Kefer

    Diplom-Medienpädagogin und Ausbildung zur Journalistin beim Bonner General-Anzeiger

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.