Bei Rotlicht 21.09.2015, 07:45 Uhr

Erste Tarnkappe, die Gegenstände verschwinden lässt

Das winzige Metamaterial aus Gold könnte noch eine große Karriere machen. US-Forschern haben das kleine Plättchen unsichtbar erscheinen lassen. Es könnte das Geheimnis verraten, wie man eine richtige Tarnkappe bauen kann. Bei Rotlicht funktioniert die Sache bereits.

US-Forscher haben aus Gold ein Metamaterial entwickelt, das Licht nicht mehr reflektiert und damit unsichtbar macht. Wenn man damit einen Menschen abdeckt, könnte auch der unsichtbar werden.

US-Forscher haben aus Gold ein Metamaterial entwickelt, das Licht nicht mehr reflektiert und damit unsichtbar macht. Wenn man damit einen Menschen abdeckt, könnte auch der unsichtbar werden.

Foto: Universität Berkeley

Manch einer würde gern „im Boden versinken“, wenn ihm was peinlich ist. Besser noch wäre er mit einer Tarnkappe bedient, wie sie in Märchen vorkommt. Doch so etwas gibt es nicht. Glauben die meisten jedenfalls. „Falsch“, sagen jetzt die Forscher der Universität von Kalifornien in Berkeley.

Einen Menschen kann das Team um Xiang Zhang, Direktor am Materialforschungslabor der Hochschule, zwar nicht unsichtbar machen. Wohl aber ein Plättchen, das allerdings wegen seiner Winzigkeit ohnehin kaum zu sehen ist. Es misst nicht einmal einen halben Millimeter. Aber jeder fängt ja mal klein an, auch die Forscher in Berkeley. Mit der Tarnkappe aus Kalifornien kann zumindest das kleine Plättchen vollends verschwinden. Vorausgesetzt, es wird von rotem Licht angestrahlt und bewegt sich nicht. Zu viele Einschränkungen für eine echte Tarnkappe.

Top Stellenangebote

Zur Jobbörse
WISAG Elektrotechnik Berlin-Brandenburg GmbH & Co. KG-Firmenlogo
Elektroingenieur | Meister als Planer (m/w/d) für Großanlagen WISAG Elektrotechnik Berlin-Brandenburg GmbH & Co. KG
HOCHBAHN U5 Projekt GmbH-Firmenlogo
Bauingenieur*in als Teilprojektleiter*in Planung U5 HOCHBAHN U5 Projekt GmbH
Hamburg Zum Job 
enercity AG-Firmenlogo
Bachelor / Master Elektrotechnik als Koordinator:in Metering Strom enercity AG
Hannover Zum Job 
James Hardie Europe GmbH-Firmenlogo
Prozessingenieur (m/w/d) James Hardie Europe GmbH
Neudenau/Siglingen Zum Job 
KANZAN Spezialpapiere GmbH-Firmenlogo
Technischer Projektplaner / Ingenieur / Techniker (m/w/d) in der Papierindustrie KANZAN Spezialpapiere GmbH
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur (w/m/d) für Bauunterhalt und Projektleitung Die Autobahn GmbH des Bundes
Nürnberg Zum Job 
Hamamatsu Photonics-Firmenlogo
Vertriebsingenieur (m/w/d) für den Bereich Spektrometer und Mikroskopie Hamamatsu Photonics
Herrsching am Ammersee Zum Job 
HOCHBAHN U5 Projekt GmbH-Firmenlogo
Projektingenieur*in Leit- und Sicherungstechnik U5 HOCHBAHN U5 Projekt GmbH
Hamburg Zum Job 
BASF Coatings GmbH-Firmenlogo
Werkstudent:in im Bereich technische Dokumentation (w/m/d) BASF Coatings GmbH
Münster Zum Job 
Albert Handtmann Metallgusswerk GmbH & Co. KG-Firmenlogo
Leiter Entwicklung und Konstruktion / Engineering Manager (m/w/d) Albert Handtmann Metallgusswerk GmbH & Co. KG
Biberach Zum Job 
BASF SE-Firmenlogo
Praktikum Prozessmanagement (m/w/d) BASF SE
Ludwigshafen Zum Job 
BASF Coatings GmbH-Firmenlogo
Digital Rotational Programm - Digital Commerce (m/w/d) BASF Coatings GmbH
Münster, Ludwigshafen Zum Job 
LTS Lohmann Therapie-Systeme AG-Firmenlogo
IP Manager (m/w/d) LTS Lohmann Therapie-Systeme AG
Andernach Zum Job 
SHS - Stahl-Holding-Saar GmbH & Co. KGaA-Firmenlogo
Projektleiter Verfahrenstechnik (m/w/d) SHS - Stahl-Holding-Saar GmbH & Co. KGaA
Dillingen/Saar Zum Job 
Sweco GmbH-Firmenlogo
Projektingenieur Elektrotechnik (m/w/x) Sweco GmbH
LEONHARD WEISS GmbH & Co. KG-Firmenlogo
Kalkulator Schlüsselfertigbau (m/w/d) LEONHARD WEISS GmbH & Co. KG
Hamburg Zum Job 
Technische Universität Wien-Firmenlogo
Universitätsprofessor_in für das Fachgebiet Stahlbeton- und Massivbau Technische Universität Wien
Wien (Österreich) Zum Job 
Technische Universität Dresden-Firmenlogo
Research Associate (m/f/x) Technische Universität Dresden
Dresden Zum Job 
Stadtwerke Heidelberg Netze GmbH-Firmenlogo
Ingenieur (m/w/i) Netzplanung / Netzberechnung Strom Stadtwerke Heidelberg Netze GmbH
Heidelberg Zum Job 
Herzog GmbH-Firmenlogo
Technischer Projektingenieur (m/w/d) Herzog GmbH
Schramberg Zum Job 

Tarnkappe für größere Objekte geplant

Aber das kann ja noch werden, glauben die Forscher, und hoffen, künftig auch größere Gegenstände verbergen zu könnrn. Ihre Tarnkappe besteht aus so genanntem Metamaterial, einem synthetische Werkstoff mit Eigenschaften, die nicht in der Natur vorkommen.

Die Materialforscher Yuan Wang (v.l.), Zi Jing Wong und Xiang Zhang haben das ultradünne Metamaterial entwickelt.

Die Materialforscher Yuan Wang (v.l.), Zi Jing Wong und Xiang Zhang haben das ultradünne Metamaterial entwickelt.

Quelle: Roy Kaltschmidt/Universität Berkeley

Das Material hat Oberflächenstrukturen, die kleiner sind als die Wellenlänge von Licht, die je nach Farbe bei einigen 100 Nanometern liegt. Diese Strukturen verhindern, dass auftreffendes Licht wie üblich reflektiert oder gestreut wird. Dadurch wird das Objekt sichtbar. Metamaterialien, die besondere optische Eigenschaften haben, lenken das Licht gewissermaßen um sich herum. Es gibt keine optische Interaktion, sodass das Objekt nicht zu sehen ist.

Premiere bei sichtbarem Licht

Xiang und sein Team stellten die Struktur, die das Licht irritiert, aus nanometergroßen Goldtröpfchen her, die sie auf einer extrem dünnen Haut platzierten. Das Gold sorgt dafür, dass es keine Reflexe gibt, wie sie in der Natur vorkommen. Das Objekt bleibt unsichtbar.

Das Metamaterial ist winzig klein und verschwindet bei rotem Licht gänzlich.

Das Metamaterial ist winzig klein und verschwindet bei rotem Licht gänzlich.

Quelle: Forschungsgruppe Xiang Zhang/Berkley Universität

„Es ist das erste Mal, dass ein beliebig geformtes Objekt im sichtbaren Licht nicht mehr zu sehen ist“, sagt Xiang. Tatsächlich spielen bei anderen Tarnkappenentwicklungen wie etwa der von Forschern des Karlsruher Instituts für Technologie die äußeren Umstände – in diesem Fall ein leichter Nebel – eine Rolle. Andere funktionieren nur im Mikrowellenbereich.

Zehn Jahre lang haben Xiang und sein Team Metamaterialien erforscht, die die optischen Regeln der Natur zu brechen vermögen. Jetzt konnten sie den ersten Durchbruch melden. Sie veröffentlichten ihre Forschungsergebnisse in der Wissenschaftszeitschrift Science.

 

Ein Beitrag von:

  • Wolfgang Kempkens

    Wolfgang Kempkens studierte an der RWTH Aachen Elektrotechnik und schloss mit dem Diplom ab. Er arbeitete bei einer Tageszeitung und einem Magazin, ehe er sich als freier Journalist etablierte. Er beschäftigt sich vor allem mit Umwelt-, Energie- und Technikthemen.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.