Forschungserfolge KIT und Fraunhofer 03.09.2019, 12:34 Uhr

Entwicklung von Solarzellen lässt Weltrekorde purzeln

Deutsche Forschergruppen stellen Solarzellen vor, die deutlich mehr Strom erzeugen als die, die heute auf den Dächern glänzen. Die 30-%-Marke beim Wirkungsgradpotenzial wurde geknackt.

Forscher mit weißem Schutzanzug hält runde Solarzelle ins Bild

Dreifachsolarzelle auf Siliziumbasis.

Foto: Fraunhofer ISE

Auch wenn in Deutschland keine Solarzellen mehr in Serie produziert werden, geht die Forschung auf hohem Niveau weiter. Innerhalb von wenigen Tagen meldeten jetzt gleich 3 Gruppen neue Erfolge. Das Fraunhofer-Institut für Solare Energiesysteme (ISE) in Freiburg setzt mit einem Wirkungsgradpotenzial von 35,1 % neue Maßstäbe für monolithische Mehrfachsolarzelle. Bisher lag er bei 33,3 %.

Ein anderes ISE-Team stellte ebenfalls einen Weltrekord auf. Eine Siliziumsolarzelle mit direkt abgeschiedenen Halbleiterschichten kam auf 24,3 % Wirkungsgrad. Damit knackten die Forscher ihren eigenen Rekord von 22,3 %, den sie im Dezember 2018 erzielt hatten.

Tandemsolarzelle mit Wirkungsgradpotenzial von über 30 %

Dritte im Bunde sind Wissenschaftler des Zentrums für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) in Stuttgart. Projektpartner sind das Karlsruher Institut für Technologie (KIT) und das Unternehmen NICE Solar Energy in Schwäbisch Hall.
Die Forscher präsentieren eine Tandemsolarzelle, die ein Wirkungsgradpotenzial von mehr als 30 % aufweist. Dieser Durchbruch gelang letztlich an der Nice-Forschungsfabrik, die der China Energy Group, der Shanghai Electric Group, der ebenfalls chinesischen Future Science City und der Manz AG aus Reutlingen gehört, einem Unternehmen, das Maschinen für die Herstellung von Solarzellen produziert. Letztlich könnte es also China sein, das von der deutschen Forschung profitiert.

Mann mit blauem Einmalhandschuh hält Tandem-Solarzelle in die Höhe

Im Projekt „Capitano“ entwickeln die Forscherinnen und Forscher ein Tandemsolarmodul aus Perowskit und CIGS.

Foto: Markus Breig/KIT

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
Deibert & Partner GmbH-Firmenlogo
Ingenieur/Techniker (m/w/d) in der Elektronikentwicklung Deibert & Partner GmbH
Bamberg Zum Job 
THD - Technische Hochschule Deggendorf-Firmenlogo
Professorin / Professor (m/w/d) für das Lehrgebiet "Automatisierungstechnik" THD - Technische Hochschule Deggendorf
Deggendorf Zum Job 
über  ifp | Executive Search. Management Diagnostik.-Firmenlogo
Fertigungsleiter:in über ifp | Executive Search. Management Diagnostik.
Norddeutschland Zum Job 
PFISTERER Kontaktsysteme GmbH-Firmenlogo
Entwicklungsingenieur Hochspannungstechnik (m/w/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
PFISTERER Kontaktsysteme GmbH-Firmenlogo
Entwicklungsingenieur Hochspannungstechnik - HVDC (m/w/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
B. Braun Melsungen AG-Firmenlogo
R&D Manager (w/m/d) B. Braun Melsungen AG
Melsungen Zum Job 
IMS Messsysteme GmbH-Firmenlogo
Entwicklungsingenieur (m/w/i) Systemsoftware IMS Messsysteme GmbH
Heiligenhaus Zum Job 
Ott GmbH & Co. KG-Firmenlogo
Applikations- und Entwicklungsingenieur (m/w/d) Ott GmbH & Co. KG
Deißlingen Zum Job 
B. Braun Melsungen AG-Firmenlogo
Global Automation Engineer (w/m/d) Equipmentintegration B. Braun Melsungen AG
Melsungen Zum Job 
Bergische Universität Wuppertal-Firmenlogo
Wissenschaftliche*r Mitarbeiter*in (Doktorand*in) am Lehrstuhl Werkstoffe für die Additive Fertigung Bergische Universität Wuppertal
Wuppertal Zum Job 
Wirtgen GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) im Bereich Gleitschalungsfertiger Wirtgen GmbH
Windhagen Zum Job 
Vibro-Consult AG-Firmenlogo
Vibration Specialist for Gas & Steam Turbines (m/f/d) Vibro-Consult AG
Brugg (Schweiz) Zum Job 
Universität Innsbruck-Firmenlogo
Universitätsprofessur für Fertigungs- und Produktionstechnik Universität Innsbruck
Innsbruck Zum Job 
pro-beam GmbH & Co. KGaA-Firmenlogo
Entwicklungsingenieur (m/w/d) Elektronenstrahl Schweißtechnik pro-beam GmbH & Co. KGaA
Burg bei Magdeburg Zum Job 
Bühler Motor Aviation GmbH-Firmenlogo
Disponent / Fertigungsplaner (m/w/d) Bühler Motor Aviation GmbH
Uhldingen-Mühlhofen Zum Job 
WAREMA Renkhoff SE-Firmenlogo
Industrial Engineer (m/w/d) Endmontage WAREMA Renkhoff SE
Marktheidenfeld Zum Job 
Bundesamt für Bauwesen und Raumordnung (BBR)-Firmenlogo
Referentin / Referent (w/m/d) in der Kompetenzstelle BIM Bundesamt für Bauwesen und Raumordnung (BBR)
Bonn, Berlin Zum Job 
Mehrer Compression GmbH-Firmenlogo
Ingenieur für Elektrotechnik (m/w/d) Mehrer Compression GmbH
Balingen Zum Job 
AbbVie Deutschland GmbH & Co. KG-Firmenlogo
R&D Manager Project Engineering (all genders) AbbVie Deutschland GmbH & Co. KG
Ludwigshafen am Rhein Zum Job 
Max Bögl-Firmenlogo
Entwicklungsingenieur (m/w/d) Steuerungstechnik Max Bögl
Sengenthal Zum Job 
Deibert & Partner GmbH-Firmenlogo
Ingenieur/Techniker (m/w/d) in der Elektronikentwicklung Deibert & Partner GmbH
Bamberg Zum Job 
THD - Technische Hochschule Deggendorf-Firmenlogo
Professorin / Professor (m/w/d) für das Lehrgebiet "Automatisierungstechnik" THD - Technische Hochschule Deggendorf
Deggendorf Zum Job 
über  ifp | Executive Search. Management Diagnostik.-Firmenlogo
Fertigungsleiter:in über ifp | Executive Search. Management Diagnostik.
Norddeutschland Zum Job 
PFISTERER Kontaktsysteme GmbH-Firmenlogo
Entwicklungsingenieur Hochspannungstechnik (m/w/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 

Mehrfachsolarzelle: 3 Spektralbereiche lassen sich nutzen

Für die Mehrfachsolarzelle werden wenige Mikrometer dünne Schichten aus III-V-Halbleitern auf eine Siliziumsolarzelle aufgebracht. Es werden gewissermaßen 2 weitere transparente Zellen draufgepackt. Jede dieser Zellen absorbiert verschiedene Spektralbereiche des Sonnenlichts, um dieses optimal zu nutzen.

  • Gallium-Indium-Phosphid wandelt sichtbares Licht mit einer Wellenlänge von 300 bis 660 Nanometern in Strom um
  • Aluminium-Gallium-Arsenid schluckt Nahinfrarotlicht mit einer Wellenlänge von 600 bis 840 Nanometer
  • Silizium absorbiert Licht mit einer Wellenlänge von 800 bis 1.200 Nanometern.

„Wir halten Wirkungsgrade von 36 % für möglich, womit das physikalische Limit einer reinen Siliziumsolarzelle von 29,4 % deutlich übertroffen wird“, so Andreas Bett, Institutsleiter am ISE.

Nachteile der Technik

Sie benötigt teures Galliumarsenid und die Herstellung durch sogenanntes Waferbonden ist teuer. Die oberen Zellen entstehen aus einem Galliumarsenid-Substrat. Dieses wird mit hohem Druck auf die Siliziumzelle gepresst. Dabei gehen die Zellen eine innige Verbindung ein. Das Galliumarsenid muss zum Schluss weggeätzt werden, da es nur für den Aufbau der Zelle vonnöten ist, nicht jedoch für den Betrieb.

Alternative Siliziumsolarzelle

Die beiden oberen Zellen können auch direkt auf der Siliziumzelle abgeschieden werden. Das reduziert die Zahl der Prozessschritte und benötigt kein Galliumarsenid. Dann wäre die Herstellung deutlich günstiger. Das erkaufen sich die Forscher jedoch mit einem geringeren Wirkungsgrad. Das liegt an Defekten in der Struktur, die die Umwandlung von Licht in Strom stellenweise reduziert. „Hier konnten wir einen wichtigen Fortschritt erzielen – die Stromgeneration in den 3 Teilzellen leidet kaum noch unter diesen Defekten, sodass wir weltweit erstmals einen Wirkungsgrad von 24,3 % für diese Technologie realisieren konnten“, so Frank Dimroth, der die Forschergruppe leitet. Das Potenzial dieser Technologie entspreche dem der wafergebondeten Zelle. Allerdings sieht er auf dem Weg dahin noch eine Menge an Forschungsarbeit.

Das Kooperationsprojekt „Capitano“ im Fokus

Die Gruppe, die vom ZSW koordiniert wird, setzt im Projekt „Capitano“ auf Dünnschichtsolarmodule auf Basis von Perowskit-Halbleitern, kombiniert mit Halbleitern aus Kupfer, Indium, Gallium und Selen (CIGS). Es handelt sich also um Tandemzellen, wobei die Perowskit-Zelle auf der CIGS-Zelle sitzt. Perowskit ist ein natürlich vorkommendes Mineral, das auch synthetisch hergestellt werden kann. Jede dieser Zellen kann, wie die Entwicklungen aus Freiburg, unterschiedliche Spektren des Solarlichts absorbieren und in Strom umwandeln. Die Zellen werden auf quadratmetergroßen Unterlagen hergestellt, was die Kosten senkt.

Das ZSW stellt die Zellen her, das KIT neue Materialien und Prozesse bereit, die die Zellenherstellung verbessern. Außerdem fertigt es Anlagen, mit denen die Perowskit-Schichten hergestellt werden. In der Nice-Fabrik, die früher unter dem Namen Würth Solar serienmäßig CIGS-Zellen herstellte, werden die Produktionstechniken getestet und weiterentwickelt. Manz schließlich will die Produktionsanlagen bauen. Die Kooperationspartner eint die Hoffnung, dass mit dieser Technik die Solarzellen-Serienproduktion nach Deutschland zurückkehren könnte.

 

Mehr News aus der Solarenergie:

Textile Solarzellen sollen Solarenergie voranbringen

Solarzellen mit hocheffizienter Lochleiterschicht aus Nickeloxid

Neue Solarzellen ahmen Photosynthese nach – mit Erfolg

Ein Beitrag von:

  • Wolfgang Kempkens

    Wolfgang Kempkens studierte an der RWTH Aachen Elektrotechnik und schloss mit dem Diplom ab. Er arbeitete bei einer Tageszeitung und einem Magazin, ehe er sich als freier Journalist etablierte. Er beschäftigt sich vor allem mit Umwelt-, Energie- und Technikthemen.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.