Tarnung von Soft-Robotern 20.10.2017, 07:29 Uhr

Ingenieure entwickeln künstliche Krakenhaut

Roboter, die bei der Tierbeobachtung eingesetzt werden, könnten sich künftig deren Gestalt anpassen. Das ist aber nur eine mögliche Anwendung eines in den USA entwickelten Materials, das auch dem Militär nutzen könnte – und vielleicht irgendwann auch sehr stabile aufblasbare Möbel liefert.

US-Ingenieure haben ein sich verformendes Material zur Tarnung entwickelt. Dazu brachten die Forscher ein flexibles, aber kaum dehnbares Fasernetz in Silikon ein. Die Form des Netzes bestimmt dann das Aussehen, wenn die Silikonhaut aufgeblasen wird.

US-Ingenieure haben ein sich verformendes Material zur Tarnung entwickelt. Dazu brachten die Forscher ein flexibles, aber kaum dehnbares Fasernetz in Silikon ein. Die Form des Netzes bestimmt dann das Aussehen, wenn die Silikonhaut aufgeblasen wird.

Foto: James Pikul/Cornell University

Kephalopoden gehören zu den für Wissenschaftler faszinierendsten Tierklassen. Die „Kopffüßer“, zu denen Tintenfische, Kraken, Kalmare und etwa 1.000 andere Arten gezählt werden, gelten als besonders intelligent und wandlungsfähig. Neuerdings interessieren sich aber nicht nur Zoologen für die Tiere, sondern auch Physiker und Ingenieure. Das Hauptaugenmerk liegt auf ihrer Fähigkeit, in Sekundenschnelle ihre Gestalt und Farbe zu ändern und sich so der Umgebung anzupassen.

Kraken sind Meister der Tarnung. Sie passen ihre Form ihrer Umgebung an. Davon inspiriert haben Forscher ein neues Material entwickelt. Es könnte bei der Tierbeobachtung helfen – aber auch dem Militär.

Kraken sind Meister der Tarnung. Sie passen ihre Form ihrer Umgebung an. Davon inspiriert haben Forscher ein neues Material entwickelt. Es könnte bei der Tierbeobachtung helfen – aber auch dem Militär.

Quelle: Carmen Jaspersen/dpa

Top Stellenangebote

Zur Jobbörse
THOST Projektmanagement GmbH-Firmenlogo
Projektmanager*in (m/w/d) für Bau- und Immobilienprojekte THOST Projektmanagement GmbH
Köln, Frankfurt am Main Zum Job 
Stadt Offenburg-Firmenlogo
Verkehrsplaner*in ÖPNV für den Fachbereich Tiefbau und Verkehr, Abteilung Verkehrsplanung Stadt Offenburg
Offenburg Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur (w/m/d) Die Autobahn GmbH des Bundes
Deggendorf Zum Job 
Stadtwerke Frankenthal GmbH-Firmenlogo
Energieberater / Projektmanager (m/w/d) Stadtwerke Frankenthal GmbH
Frankenthal (Pfalz) Zum Job 
N-ERGIE Netz GmbH-Firmenlogo
Netzkundenmanager im Bereich Strom (m/w/d) N-ERGIE Netz GmbH
Nürnberg, Weißenburg, Neusitz Zum Job 
AGFW | Der Energieeffizienzverband für Wärme, Kälte und KWK e. V.-Firmenlogo
Ingenieur / Referent (m/w/d) Kundenanlagen AGFW | Der Energieeffizienzverband für Wärme, Kälte und KWK e. V.
Frankfurt am Main Zum Job 
Stadt Norderstedt-Firmenlogo
Tiefbauingenieur*in (w/m/d) Stadt Norderstedt
Norderstedt Zum Job 
Stadt Heidelberg-Firmenlogo
Brandschutzbeauftragte / Brandschutzbeauftragter (m/w/d) Stadt Heidelberg
Heidelberg Zum Job 
RITTAL GmbH & Co. KG-Firmenlogo
Projektingenieur (m/w/d) Klimalabor Produktentwicklung Klimatisierungsprodukte RITTAL GmbH & Co. KG
Herborn Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Wirtschaftsjurist*in / Ingenieur*in (m/w/d) für Contract & Claimsmanagement in Energieprojekten THOST Projektmanagement GmbH
THOST Projektmanagement GmbH-Firmenlogo
Consultant (m/w/d) im Projektmanagement der Energiewende THOST Projektmanagement GmbH
verschiedene Standorte Zum Job 
Hamburger Hochbahn AG-Firmenlogo
Senior Projektingenieur Infrastruktur (w/m/d) Hamburger Hochbahn AG
Hamburg Zum Job 
SWM Services GmbH-Firmenlogo
Stellvertretende Laborleitung Trinkwasserlabor (m/w/d) Schwerpunkt Auftragsmanagement und Probenahme SWM Services GmbH
München Zum Job 
Stadtverwaltung Sindelfingen-Firmenlogo
Bauleitung (m/w/d) für das Projekt Tiefgarage Marktplatz Stadtverwaltung Sindelfingen
Sindelfingen Zum Job 
ISL Deutsch-Französisches Forschungsinstitut-Firmenlogo
Wissenschaftler (m/f/d) für theoretische, experimentelle und numerische Flugmechanik ISL Deutsch-Französisches Forschungsinstitut
Saint-Louis (Frankreich) Zum Job 
Jenoptik AG-Firmenlogo
Manager*in (f/m/d) Engineering Medical Jenoptik AG
ISL Deutsch-Französisches Forschungsinstitut-Firmenlogo
Test- und Messingenieur (m/w/d) ISL Deutsch-Französisches Forschungsinstitut
Saint-Louis (Frankreich) Zum Job 
ISL Deutsch-Französisches Forschungsinstitut-Firmenlogo
Wissenschaftler (m/w/d) - Computer-Vision / Entwicklung von Algorithmen ISL Deutsch-Französisches Forschungsinstitut
Saint-Louis (Frankreich) Zum Job 
Harmonic Drive SE-Firmenlogo
Produktmanager Mechatronik (m/w/d) Harmonic Drive SE
Limburg an der Lahn Zum Job 
Hexagon Purus ASA-Firmenlogo
Process Engineer Projects (m/w/d) Hexagon Purus ASA

Forscher der Cornell University im US-Bundesstaat New York haben jetzt ein Material präsentiert, das diese besonderen Talente nachahmt. Zwar können schon heute viele Roboter ihre Gestalt verändern, aber die dafür notwendige Mechanik und Elektronik war den Wissenschaftlern viel zu kompliziert. „Wir wollten eine ganz simple Methode dafür“, sagt der Mechanik-Experte Rob Shepherd. Das Ziel: Eine ganz bestimmte Gestalt zu erreichen, indem man ein Material so einfach wie einen Luftballon aufbläst. Dazu muss man die Form eines weichen Materials kontrollieren. Wie aber geht das?

Wie ein mit Schnur umwickelter Luftballon

Die New Yorker Forscher nutzen ein Prinzip, das etwa einem Luftballon entspricht, um den man vorher Schnüre gewickelt hat. Dafür brauchten sie nach eigener Aussage die Inspiration aus der Tierwelt – und „eine gesunde Dosis Mathematik“.

Die New Yorker Forscher nutzen ein Prinzip, das etwa einem Luftballon entspricht, um den man vorher Schnüre gewickelt hat. 

Die New Yorker Forscher nutzen ein Prinzip, das etwa einem Luftballon entspricht, um den man vorher Schnüre gewickelt hat.

Quelle: James Pikul/Cornell University

Ein Kopffüßer ändert seine Gestalt, indem er Muskeln aktiviert, die die sie umgebenden Strukturen vertikal aufrichten und so etwa Vorwölbungen in der Haut erzeugen können. Die Forschergruppe hat diese Methode imitiert, indem sie zwei Materialien kombinierte: ein Fasergeflecht, das in verformbares Silikon eingebettet ist. Das Silikon wird in eine im 3D-Drucker erzeugte Mischung eingespritzt. Die Kombination von dehnbarem Silikon mit dem nicht dehnbaren Geflecht sorgt dafür, dass das Material beim Aufblasen exakt in die gewünschte Form kommt.

Möbelpacker haben vielleicht bald wenig zu tun

Mögliche Anwendungen für die Technik liegen vor allem bei mobilen Robotern. Sie werden zum Beispiel in der Tierbeobachtung eingesetzt. Damit die Tiere aber nicht vor dem fremden Objekt fliehen, könnte es sich der Umgebung und den Beobachtungsobjekten selbst anpassen. Interessant kann die Methode natürlich auch für die flexible Tarnung von Militärrobotern sein. Militärroboter, die man praktisch mithilfe einer gewöhnlichen Luftpumpe zum Leben erweckt.

Auch die Form von Steinen konnten die Ingenieure mit dem aufblasbaren Material nachbilden.

Auch die Form von Steinen konnten die Ingenieure mit dem aufblasbaren Material nachbilden.

Quelle: James Pikul/Cornell University

Rob Shepherd sieht aber noch weitaus breitere Möglichkeiten. „Man könnte zum Beispiel flache Bögen eines Materials per Fracht verschicken, die erst vom Empfänger aufgeblasen wird“, sagt der Forscher. Zwar geht das mit jedem billigen Ballon, aber der Wissenschaftler spricht eben von viel stabileren Strukturen. Da könnte ein Hersteller etwa ein Stück Gummi zusammen mit einem zweiteiligen Polyurethan verschicken, das sich zu einem Schaum verbindet. Der Kunde füllt das Gummistück schließlich Zuhause mit dem Schaum – fertig ist der Sessel.

Beobachtung im Aquarium

Bis es so weit ist, dürfte es noch eine Weile dauern. Weil auch Shepherd das weiß, hat er sich ein mehr als 1.100 Liter fassendes Aquarium in sein Labor stellen lassen. Darin will er einen Kraken ganz in Ruhe beobachten. In Zukunft will er dann mit seinen Kollegen noch präzisere Formen herstellen und auch die Veränderung von Farbe und Oberflächenstruktur angehen.

Soft Robotics heißt seit einigen Jahren ein Zauberwort in der wissenschaftlichen Robotik. Statt einer Maschine aus Metall, die etwas ungelenk immer dieselben Bewegungen ausführt, sind die „weichen“ Roboter der Zukunft biegsam und dehnbar, passen sich ihrer Umgebung an und können sich erstaunlich komplex darin bewegen. Ein Robotiker-Team aus Pisa widmet sich seit 2009 einem Oktopus-Roboter und versucht, die geschmeidigen Bewegungen der Arme seines biologischen Vorbilds zu imitieren. Mehr dazu lesen Sie hier.

 

Ein Beitrag von:

  • Werner Grosch

    Werner Grosch ist Journalist und schreibt vor allem über Technik. Seine Fachgebiete sind unter anderem Elektromobilität, Energie, Robotik und Raumfahrt.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.