Stärkstes Material der Welt 29.05.2018, 13:06 Uhr

Neue Superfaser ist achtmal stärker als Spinnenseide

Am Hamburger Teilchenbeschleuniger DESY hat ein Forscherteam jetzt das stärkste Biomaterial hergestellt, das jemals produziert worden ist. Die Superfaser lässt sogar Spinnenseide, die als stärkstes Material auf Erden gilt, alt aussehen. Gleich achtmal stärker ist die Faser, die aus Zellulose-Nanofasern durch Werkstoff-Zaubertricks entsteht.

So sieht die stärkste Faser der Welt unter dem Rasterelektronenmikroskop aus.

So sieht die stärkste Faser der Welt unter dem Rasterelektronenmikroskop aus.

Foto: Nitesh Mittal/KTH Stockholm

Nun ist die Spinne vom Thron gestoßen worden: Bisher galt die von ihr gesponnene Spinnenseide als das stärkste Material auf Erden, noch stärker als Stahl. Ein Forscherteam um Daniel Söderberg von der Königlichen Technischen Hochschule (KTH) Stockholm hat jetzt gemeinsam mit dem schwedischen Forschungsinstitut RISE Bioeconomy, der Stanford-Universität und der Universität von Michigan an der Röntgenlichtquelle PETRA III am Teilchenbeschleuiger Deutsches Elektronen-Synchroton (DESY) in Hamburg das stärkste Biomaterial hergestellt, welches jemals produziert worden ist. „Die von uns hergestellten biobasierten Nanozellulosefäden sind achtmal steifer und einige Male zugfester als die Abseilfäden aus natürlicher Spinnenseide“, betont Daniel Söderberg. „Wenn man biobasiertes Material sucht, gibt es nichts wirklich Vergleichbares. Es ist auch stärker als Stahl und alle anderen Metalle oder Legierungen sowie als Fiberglas und die meisten anderen synthetischen Materialien.“ In der Fachsprache zeigte das Material eine Biegsteifigkeit von 86 Gigapascal und eine Zugfestigkeit von 1,57 Gigapascal. Der Stockholmer Wissenschaftler ist überzeugt, dass es ein vergleichbares biobasiertes Material auf diesem Planeten nicht gibt.

Technik der hydrodynamischen Fokussierung

Dieser Weltrekord gelang den Forschern mit kommerziell angebotenen Zellulose-Nanofasern. Diese sogenannten Fibrillen sind nur etwa 2 bis 5 Nanometer dünn und bis zu 700 Nanometer lang und sind im Prinzip die Basis von Pflanzen und Holz. Mit diesen konventionellen Fasern gelang den Wissenschaftlern ein materialwissenschaftliches Meisterstück.

Top Stellenangebote

Zur Jobbörse
PFINDER KG-Firmenlogo
Produktentwickler (m/w/d) Zerstörungsfreie Werkstoffprüfung PFINDER KG
Böblingen Zum Job 
WTM ENGINEERS GMBH-Firmenlogo
BIM-Modeler (m/w/d) für den Bereich Ingenieurwasserbau WTM ENGINEERS GMBH
Hamburg, Kiel, Rostock Zum Job 
Hamamatsu Photonics Deutschland GmbH-Firmenlogo
Master / Diplom in Physik oder Elektrotechnik als Vertriebsingenieur/in für Bereich Analytical (m/w/d) Hamamatsu Photonics Deutschland GmbH
Herrsching am Ammersee Zum Job 
Ministerium für Wirtschaft, Verkehr, Arbeit, Technologie und Tourismus-Firmenlogo
Referentin/Referent (m/w/d) im Referat "Straßenbau" Ministerium für Wirtschaft, Verkehr, Arbeit, Technologie und Tourismus
Mercer Stendal GmbH-Firmenlogo
Betriebsingenieur Mechanik (m/w/d) Mercer Stendal GmbH
Arneburg Zum Job 
Hamburger Hochbahn AG-Firmenlogo
Techniker / Ingenieur Elektrotechnik Wartung / Instandhaltung (w/m/d) Hamburger Hochbahn AG
Hamburg Zum Job 
Städtisches Klinikum Dresden-Firmenlogo
Ingenieur (m/w/d) Technische Gebäudeausrüstung (TGA) Städtisches Klinikum Dresden
Dresden Zum Job 
Rohde & Schwarz Österreich GesmbH-Firmenlogo
Softwareentwickler (m/w/d) Embedded Systems Rohde & Schwarz Österreich GesmbH
Singapur, Stuttgart, Berlin, München Zum Job 
Carl Zeiss Meditec AG-Firmenlogo
Applikationsingenieur (m/w/x) Carl Zeiss Meditec AG
Carl Zeiss Meditec AG-Firmenlogo
Process Engineer (m/w/x) Carl Zeiss Meditec AG
Carl ZEISS MultiSEM-Firmenlogo
Entwicklungsingenieur Elektronik (m/w/x) Carl ZEISS MultiSEM
Oberkochen Zum Job 
Bundesamt für Bauwesen und Raumordnung (BBR)-Firmenlogo
Ingenieurinnen und Ingenieure (w/m/d) in den Fachrichtungen Elektro- bzw. Nachrichtentechnik Bundesamt für Bauwesen und Raumordnung (BBR)
Bundesamt für Bauwesen und Raumordnung (BBR)-Firmenlogo
Ingenieurinnen und Ingenieure (w/m/d) in den Fachrichtungen Versorgungstechnik und Gebäudeautomation Bundesamt für Bauwesen und Raumordnung (BBR)
THOST Projektmanagement GmbH-Firmenlogo
Projektkoordinator*in (m/w/d) Ladeinfrastruktur THOST Projektmanagement GmbH
Freiburg im Breisgau, Stuttgart, Karlsruhe, München, Mannheim Zum Job 
GEBHARDT Fördertechnik GmbH-Firmenlogo
Entwicklungsprojektleitung Robotik & Lagerfahrzeuge (m/w/d) GEBHARDT Fördertechnik GmbH
Sinsheim Zum Job 
GEBHARDT Fördertechnik GmbH-Firmenlogo
Team Lead Process- & Change-Management engineering department (m/w/d) GEBHARDT Fördertechnik GmbH
Sinsheim Zum Job 
Handtmann Systemtechnik GmbH & Co. KG-Firmenlogo
Qualitätsingenieur (m/w/d) Handtmann Systemtechnik GmbH & Co. KG
Biberach/Riss Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Projektingenieur Ingenieurbau (w/m/d) Die Autobahn GmbH des Bundes
München Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieurin oder Bauingenieur Planung (w/m/d) Die Autobahn GmbH des Bundes
Hannover Zum Job 
Stadtwerke Aalen GmbH-Firmenlogo
Asset-Management Koordinator*in Stadtwerke Aalen GmbH

Zunächst schickten sie die Fasern in Wasser durch einen hauchdünnen und nur einen Millimeter breiten Kanal in einem Stahlblock. Durch zwei Paare seitlicher Zuflüsse ließen sie entionisiertes Wasser und gleichzeitig Wasser mit einem niedrigen pH-Wert einfließen. Dadurch verengt sich der fließende Strang der Nanofasern auf ein hundertstel Millimeter und die Fasern werden elektrisch geladen. Diese Technik nennt sich hyperdynamische Fokussierung und bewirkt, dass die Nanofasern sich wie durch eine Zauberhand kontrolliert zu einem hoch strukturierten Faden zusammenlagern.

„Potenzial für die Biomedizin“

Supramolekulare Kräfte wie elektrostatische oder Van-der-Waals-Kräfte sorgen dafür, dass die Nanofasern ohne Klebstoff zusammen haften. Durch diesen Trick konnten die Forscher die besonderen mechanischen Eigenschaften der Nanofasern in die sehr viel größere makroskopische Welt übertragen.

Daniel Söderberg hält das starke Biomaterial für eine umweltfreundliche Alternative für Kunststoffe in Autos, für Möbel und in Flugzeugen. „Unser neues Material hat auch Potenzial für die Biomedizin, da Zellulose vom Körper nicht abgestoßen wird“, erläutert Söderberg. Möglicherweise begründet das Material der schwedischen Wissenschaftler völlig neue Anwendungen in der Prothetik.

Röntgenstrahl von PETRA III als Beobachungs-Lichtquelle

Der helle Röntgenstrahl von PETRA III diente dem Forscherteam als Beobachungs-Lichtquelle. Denn im Röntgenlicht ließ sich der Prozess der hydrodynamischen Fokussierung bis ins kleinste Detail verfolgen und half dabei, den Prozess zu optimieren. Es ist das Streumuster des Röntgenlichts, das dem Team zeigte, wie sich die Nanofibrillen parallel ausrichten und tatsächlich durch die zwischenmolekularen Bindungskräfte aneinanderhaften.

„Das Röntgenlicht erlaubt uns, die detaillierte Struktur des Fadens zu analysieren, während er entsteht. Das schließt sowohl die Materialstruktur ein als auch die hierarchische Ordnung in den superstarken Fasern“, erklärt Ko-Autor Stephan Roth, DESY-Wissenschaftler und Leiter der Mikro- und Nanofokus-Messstation P03, an der die Fäden gesponnen wurden. „Wir haben Fäden von bis zu 15 Mikrometern Dicke und mehreren Metern Länge hergestellt.“

Die Superfäden verhalten sich wie gewöhnliche Fäden

Die superstarken Fäden verhalten sich dabei wie jeder andere gewöhnliche Faden und können zu superstarken Stoffen verwoben werden. Die Herstellungskosten solcher superstarken Stoffe soll laut den Forschern mit den Produktionskosten besonders fester synthetischer Stoffe konkurrieren können.

„Aus dem neuen Material lassen sich im Prinzip biologisch abbaubare Bauteile entwickeln“, meint Stephan Roth. Die Forscher haben mit ihrem Werkstoff-Meisterstück die Barriere zwischen der Nanowelt und der Alltagswelt überbrückt. Die Zellulose-Nanofasern sind nach der hyperdynamischen Fokussierung zu einer nahezu perfekten Anordnung arrangiert.

„Überragende Leistung aus dem Nanokosmos in den Makrokosmos übertragen“

So können sie ein Material aus Nanofasern entwickeln, das sich für größere Werkstücke nutzen lässt und trotzdem die extreme Zugfestigkeit und die mechanische Belastbarkeit der Nanofasern erhält. „Wir können jetzt die überragende Leistung aus dem Nanokosmos in den Makrokosmos übertragen“, betont Söderberg. „Ermöglicht hat diese Entdeckung, dass wir gelernt haben, Partikelgröße, Wechselwirkungen, Ausrichtung, Ausbreitung, Netzwerkbildung und Gruppierung zu verstehen und zu kontrollieren.“ Das Forscherteam hat seine Ergebnisse jüngst im Fachblatt ACS Nano“ der US-amerikanischen Chemischen Gesellschaft vorgestellt.

Ein Beitrag von:

  • Detlef Stoller

    Detlef Stoller ist Diplom-Photoingenieur. Er ist Fachjournalist für Umweltfragen und schreibt für verschiedene Printmagazine, Online-Medien und TV-Formate.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.