Keilförmige Linse 02.06.2015, 11:46 Uhr

Röntgenmikroskop liefert Nanobilder aus dem Inneren von Materialien

Mit einer Linse, die weltweit einmalig ist, können Forscher aus Hamburg Röntgenstrahlen auf einen Durchmesser von wenigen Nanometern fokussieren. Das gelingt mit tausenden Schichten, die übereinander in Keilform abgeschieden werden.

Rekonstruierter Röntgenfokus der Linse: An der Taille erreicht er eine Größe von nur noch acht Nanometern.

Rekonstruierter Röntgenfokus der Linse: An der Taille erreicht er eine Größe von nur noch acht Nanometern.

Foto: Saša Bajt/Desy

Röntgenstrahlen dringen tief in Materie ein. Deshalb sind sie, anders als Mikroskope, bestens geeignet, innere Strukturen zu ergründen, etwa von biologischen Zellen, elektronischen Bauteilen oder Nanomaterialien für Energieumwandlung oder -speicherung. Sie haben nur einen Nachteil: Die Bilder, die sie liefern, sind nicht wirklich scharf – wie jeder weiß, der schon mal eine Röntgenaufnahme eines gebrochenen Arms oder einer Zahnwurzel gesehen hat.

Top Stellenangebote

Zur Jobbörse
IMS Messsysteme GmbH-Firmenlogo
Entwicklungsingenieur (m/w/i) optische und radiometrische Messsysteme IMS Messsysteme GmbH
Heiligenhaus Zum Job 
IMS Messsysteme GmbH-Firmenlogo
Projektleiter (m/w/i) Vertrieb IMS Messsysteme GmbH
Heiligenhaus Zum Job 
Kromberg & Schubert Automotive GmbH & Co. KG-Firmenlogo
Ingenieur als Vorentwickler Leitungssatz (m/w/d) Schwerpunkt Kontaktsysteme und Werkstoffe Kromberg & Schubert Automotive GmbH & Co. KG
Renningen Zum Job 
Fraunhofer-Institut für Windenergiesysteme IWES-Firmenlogo
Ingenieur*in Leistungselektronik und Netzintegration Fraunhofer-Institut für Windenergiesysteme IWES
Bremerhaven Zum Job 
Stadt Eschborn-Firmenlogo
Ingenieur als Leitung für das Sachgebiet Tiefbau (w/m/d) Stadt Eschborn
Eschborn Zum Job 
Lufthansa Technik AG-Firmenlogo
Projektingenieur für Werkzeugmaschinen (m/w/divers) Lufthansa Technik AG
Hamburg Zum Job 
SachsenNetze HS.HD GmbH-Firmenlogo
Ingenieur*in Systemführung Strom SachsenNetze HS.HD GmbH
Dresden Zum Job 
Lufthansa Technik AG-Firmenlogo
Projektingenieur f. elektrische Betriebsmittel und Anlagen (m/w/divers) Lufthansa Technik AG
Hamburg Zum Job 
Deutscher Wetterdienst (DWD)-Firmenlogo
Informatikerin/Informatiker (m/w/d), Diplom-Ingenieurin/Diplom-Ingenieur (m/w/d) oder Meteorologin/Meteorologe (m/w/d) (FH-Diplom/Bachelor) für die Einführung und Weiterentwicklung der Fernerkundungssysteme, Schwerpunkt Softwarebereich Deutscher Wetterdienst (DWD)
Hamburg-Sasel Zum Job 
Friedrichshafen-Firmenlogo
Ingenieurin/Ingenieur im Sachgebiet Betrieb von Verkehrsanlagen (m/w/d) Friedrichshafen
Friedrichshafen Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Projektingenieurinnen oder Projektingenieure Hochbau (w/m/d) Die Autobahn GmbH des Bundes
Hannover Zum Job 
Qair Deutschland GmbH-Firmenlogo
Projektingenieur / Projekttechniker (m/w/d) Qair Deutschland GmbH
München Zum Job 
NSM MAGNETTECHNIK GmbH-Firmenlogo
Maschinenbauingenieur/ -techniker (m/w/d) im Geschäftsbereich Fördersysteme NSM MAGNETTECHNIK GmbH
EFS Gesellschaft für Hebe- und Handhabungstechnik mbH-Firmenlogo
Elektrokonstrukteur (m/w/d) Automatisierungstechnik im Bereich Sondermaschinenbau EFS Gesellschaft für Hebe- und Handhabungstechnik mbH
Nordheim Zum Job 
Landtag Mecklenburg-Vorpommern-Firmenlogo
Sachbearbeiterin oder Sachbearbeiter für Elektrotechnik (m/w/d) Landtag Mecklenburg-Vorpommern
Schwerin Zum Job 
BDEW Bundesverband der Energie- und Wasserwirtschaft e. V.-Firmenlogo
Referent (w/m/d) Energieeffizienz und elektrotechnische Gebäudeinfrastruktur BDEW Bundesverband der Energie- und Wasserwirtschaft e. V.
Alimak Group Deutschland GmbH-Firmenlogo
Sales Manager (m/w/d) im technischen Vertriebsaußendienst Alimak Group Deutschland GmbH
Mammendorf Zum Job 
Stadt Sindelfingen-Firmenlogo
Bauingenieure / Bautechniker (m/w/d) Stadt Sindelfingen
Böblingen-Sindelfingen Zum Job 
VAIVA GmbH-Firmenlogo
Teamleiter (m/w/d) Car2X & Connected Services VAIVA GmbH
Wolfsburg Zum Job 
AGCO GmbH-Firmenlogo
Projektingenieur (m/w/d) für Getriebemontage und Volumenplanung AGCO GmbH
Marktoberdorf Zum Job 

Das wird jetzt anders. Mit neuartigen Linsen lässt sich das Röntgenlicht künftig so stark fokussieren, dass es im Brennpunkt auf wenige Nanometer schrumpft. Mit einem solchen Röntgenmikroskop lassen sich Strukturen im Inneren von Materie ähnlich scharf abbilden wie Oberflächen oder dünne Schnitte mit Elektronenmikroskopen.

Gebändigtes Röntgenlicht

Die Voraussetzung dafür haben Wissenschaftler am Deutschen Elektronen-Synchrotron (Desy) in Hamburg geschaffen. Sie entwickelten Linsen, die es tatsächlich schaffen, Röntgenlicht, das auf Grund seiner Eigenschaften dazu neigt, die meisten Materialien zu durchdringen, ohne sich von ihrer Bahn ablenken zu lassen, zu bändigen.

Normalerweise gelingt das vor allem mit speziellen Spiegeln, die Röntgenstrahlen reflektieren. Wenn sie eine ganze Batterie von Reflektoren hinter sich haben, bilden sie einen relativ scharf fokussierten Strahl. Der lässt allerdings noch keine nanometergenauen Untersuchungen zu. Außerdem ist die Prozedur höchst aufwändig.

Die neue Röntgenlinse unter dem Rasterelektronenmikroskop. Der helle Bereich besteht aus 5500 ultradünnen, keilförmigen Schichten aus Wolfram und Siliziumkarbid. Die Linse ist 40 Mikrometer breit.

Die neue Röntgenlinse unter dem Rasterelektronenmikroskop. Der helle Bereich besteht aus 5500 ultradünnen, keilförmigen Schichten aus Wolfram und Siliziumkarbid. Die Linse ist 40 Mikrometer breit.

Quelle: Saša Bajt/Desy

Vor rund einem Jahrhundert entdeckte der Physiker Max von der Laue, dass Röntgenstrahlen sich in gewissem Maße von Kristallgittern fokussieren lassen. Seine Nachfahren haben diese Erkenntnis genutzt, um künstliche Kristalle zu entwickeln, die aus zwei, meist mehreren unterschiedlichen dünnen Schichten bestehen. Diese lagern sich, fein zerstäubt, übereinander ab.

Wissenschaftler sprechen von Multischicht-Laue-Linsen (MLL). „Konventionelle Laue-Linsen sind aus geometrischen Gründen allerdings in ihrer Beugungsfähigkeit begrenzt“, sagt Saša  Bajt, die im Desy eine Forschergruppe leitet, die MLL verbessern will. „Um die optimale Ablenkkraft zu bekommen, müssen die Lagen einer Laue-Linse leicht gegeneinander gekippt sein, so die Physikerin.

Keilstruktur aus 5500 Schichten

Das ist ihrer Gruppe jetzt gelungen. Sie haben eine Ablagerungstechnik entwickelt, bei der keilförmige Schichten entstehen. Dazu setzen sie eine bewegliche Maske ein, die das Schichtmaterial stellenweise abfängt. „Vor uns ist es niemandem auch nur in Ansätzen gelungen, eine solche keilförmige Linse herzustellen“, sagt Bajt voller Stolz. Die Forschergruppe produzierte eine Keilstruktur aus 5500 Schichten, in denen sich Siliziumkarbid und Wolfram abwechseln.

Die Linse, die schließlich aus dieser Struktur geschnitten wurde, ist 40 Mikrometer (µm) breit, 17,5 µm dick und 6,5 µm tief. Tests mit ultrahellem Röntgenlicht der Desy-eigenen Quelle Petra III zeigten, dass sich Röntgenstrahlen mit zwei hintereinander angebrachten Linsen dieser Art auf ganze acht Nanometer (nm) fokussieren lassen (ein nm ist ein Millionstel Millimeter).

Ein Beitrag von:

  • Wolfgang Kempkens

    Wolfgang Kempkens studierte an der RWTH Aachen Elektrotechnik und schloss mit dem Diplom ab. Er arbeitete bei einer Tageszeitung und einem Magazin, ehe er sich als freier Journalist etablierte. Er beschäftigt sich vor allem mit Umwelt-, Energie- und Technikthemen.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.