Material mit Hightech-Perspektiven 10.07.2019, 10:56 Uhr

Neuartiges Material ist Hybrid aus Diamant und Metall

Entgegen aller bisherigen Erkenntnisse: Bayreuther Forscher entwickeln neuartiges und vielversprechendes Material, das metallisch leitfähig und superhart ist.

Struktur des Rhenium-Nitrid-Pernitrids

Rhenium-Nitrid-Pernitrid: Die dargestellte Struktur weist Rheniumatome (große Kugeln), Stickstoffatome (rote Kugeln) und Stickstoffhanteln N-N (blaue Kugeln) aus.

Foto: Maxim Bykov

Eine kürzlich erfolgte Veröffentlichung der Universität Bayreuth verzückt die Wissenschaft. Dem internationalen Forscherteam unter Führung von Wissenschaftlern der Universität Bayreuth ist es gelungen, ein völlig neuartiges Material zu erzeugen. Zwar gibt es entsprechende Meldungen öfter, in diesem Fall ist sie jedoch besonders. Ausschlaggebend für die Einzigartigkeit ist die Tatsache, dass die Verbindung bisherigen Erkenntnissen widerspricht und die Forschung auf diesem Gebiet revolutionieren könnte.

Rhenium-Nitrid-Pernitrid: ungewöhnlich und einzigartig

Dass das neue Material für viel Aufsehen sorgt und in Zukunft in vielerlei Hinsicht interessant sein dürfte, kommt nicht von ungefähr. Schließlich waren viele Experten lange Zeit der Meinung, dass eine derartige Verbindung nicht möglich sei. So gesehen stellt das Rhenium-Nitrid-Pernitrid eine kleine Sensation dar. Doch worin liegen die besonderen Eigenschaften des neuartigen Materials?

Top Stellenangebote

Zur Jobbörse
über ifp l Personalberatung Managementdiagnostik-Firmenlogo
Geschäftsführer (m/w/d) über ifp l Personalberatung Managementdiagnostik
Rheinland-Pfalz Zum Job 
Stadt Köln-Firmenlogo
Bauingenieur*in (m/w/d) für die Generalsanierung der Mülheimer Brücke beim Amt für Brücken, Tunnel und Stadtbahnbau Stadt Köln
Deutsche Rentenversicherung Bund-Firmenlogo
Ingenieur*in Elektrotechnik / Starkstrom (m/w/div) Deutsche Rentenversicherung Bund
Stadt Freiburg-Firmenlogo
Sachgebietsleiterin (a) Technische Ausrüstung / Energiemanagement Stadt Freiburg
Freiburg Zum Job 
Landeshauptstadt Stuttgart-Firmenlogo
Wirkungsanalyst*in Verkehr, Umwelt, Sicherheit (m/w/d) Landeshauptstadt Stuttgart
Stuttgart Zum Job 
Kurtz GmbH & Co. KG-Firmenlogo
Elektrokonstrukteur (m/w/d) Kurtz GmbH & Co. KG
Wertheim Zum Job 
Beckhoff Automation GmbH & Co. KG-Firmenlogo
Studierende (m/w/d) für ein Praxissemester Beckhoff Automation GmbH & Co. KG
Kurtz GmbH & Co. KG-Firmenlogo
Senior Konstrukteur (m/w/d) Kurtz GmbH & Co. KG
Wertheim Zum Job 
Kurtz GmbH & Co. KG-Firmenlogo
Produktmanager (m/w/d) Kurtz GmbH & Co. KG
Wertheim Zum Job 
Kurtz GmbH & Co. KG-Firmenlogo
Energieelektroniker (m/w/d) Kurtz GmbH & Co. KG
Wertheim Zum Job 
Kurtz GmbH & Co. KG-Firmenlogo
Produktmanager Digitalisierung (m/w/d) Kurtz GmbH & Co. KG
Wertheim Zum Job 
Kurtz GmbH & Co. KG-Firmenlogo
Recruiting Expert (m/w/d) Kurtz GmbH & Co. KG
Kreuzwertheim Zum Job 
Kurtz Ersa Automation GmbH-Firmenlogo
Elektroniker/Mechatroniker (m/w/d) Kurtz Ersa Automation GmbH
Wertheim Zum Job 
Kurtz Holding GmbH & Co. Beteiligungs KG-Firmenlogo
Compliance Expert (m/w/d) Kurtz Holding GmbH & Co. Beteiligungs KG
Kreuzwertheim Zum Job 
Kurtz Holding GmbH & Co. Beteiligungs KG-Firmenlogo
DevOps Engineer (m/w/d) Kurtz Holding GmbH & Co. Beteiligungs KG
Kreuzwertheim Zum Job 
Ersa GmbH-Firmenlogo
Softwareentwickler (m/w/d) Embedded Systems Ersa GmbH
Kreuzwertheim Zum Job 
Kurtz Holding GmbH & Co. Beteiligungs KG-Firmenlogo
UI/UX Designer (m/w/d) Kurtz Holding GmbH & Co. Beteiligungs KG
Kreuzwertheim Zum Job 
Kurtz GmbH & Co. KG-Firmenlogo
Softwareentwickler SPS (m/w/d) Kurtz GmbH & Co. KG
Kreuzwertheim Zum Job 
Ersa GmbH-Firmenlogo
Softwareentwickler (m/w/d) Ersa GmbH
Wertheim Zum Job 
Kurtz GmbH & Co. KG-Firmenlogo
Technischer Produktdesigner (m/w/d) für den Bereich Dokumentation Kurtz GmbH & Co. KG
Kreuzwertheim Zum Job 

Das Rhenium-Nitrid-Pernitrid entstand infolge von Hochdruck-Experimenten, die an der Universität Bayreuth durchgeführt wurden. Aufgrund des hohen Drucks bei der Herstellung ist das Material superhart und inkompressibel. Letzteres bedeutet, dass das Rhenium-Nitrid-Pernitrid selbst unter hohem Druck nicht nachgibt und entsprechend auch nicht zusammengepresst werden kann. Darüber hinaus besitzt das Material eine hohe metallische Leitfähigkeit.

Die Kombination aus eben jenen Eigenschaften war nach dem bisherigen Stand der Forschung als ausgeschlossen angesehen worden. Die Ergebnisse der Bayreuther Forscher konnten diese Annahme nun auf beeindruckende Weise widerlegen und eröffnen neue Optionen bei der Erforschung und Herstellung ähnlicher Materialien. So ist es insbesondere die Synthese von Nitriden, die zukünftig wegweisend sein könnte.

Rhenium-Nitrid-Pernitrid ist nur der Anfang

Zwar steht das neue Material derzeit im Fokus, doch eigentlich ist das Verfahren der Herstellung wohl der wichtigere Aspekt. Denn was die Bayreuther Forscher entwickelt haben, könnte in Zukunft auch bei der Herstellung weiterer Materialien zum Einsatz kommen. Am konkreten Beispiel des Rhenium-Nitrid-Pernitrids wird deutlich, dass es vor allem die komplexen Stickstoffverbindungen sind, die zur hohen Widerstandsfähigkeit geführt haben. Neben einzelnen Stickstoffatomen besteht das Rhenium-Nitrid-Pernitrid darüber hinaus aus N-N-Stickstoffhanteln. Dabei weisen jeweils zwei Stickstoffatome eine besonders enge Verbindung auf, wodurch sich die hohe Inkompressibilität des Materials erklären lässt. Die widerstandsfähigen Eigenschaften waren allerdings nicht auf den ersten Blick sichtbar. Erst mithilfe der Röntgenquelle Petra III in Hamburg konnten die robusten Kristallstrukturen sichtbar gemacht werden. Zuletzt stellte Petra III auch fest, dass diese neue Superfaser achtmal stärker ist als Spinnenseide.

Bei der Herstellung des widerstandsfähigen Materials waren neben Natalia Dubrovinskaia und ihrem Team aus Bayreuth auch das Deutsche Elektronen-Synchrotron, Forscher der Friedrich-Alexander-Universität Erlangen-Nürnberg sowie der Ludwig-Maximilians-Universität München in die Entwicklung eingebunden. Weiterhin lieferten die schwedische Universität Linköping, die European Synchrotron Radiation Facility aus Grenoble sowie das Materialmodellierungs- und -entwicklungslabor in Moskau wichtige Beiträge zur Herstellung des Rhenium-Nitrid-Pernitrids.

Herstellung auch bei geringem Druck möglich

In weiterführenden Tests konnte das bisherige Herstellungsverfahren sogar optimiert werden. Nach umfangreichen Versuchen entwickelten die Bayreuther Forscher eine Möglichkeit, das neuartige Material selbst bei geringem Druck herzustellen. Hierfür wurde eine Großvolumenpresse genutzt. Sie benötigt lediglich einen Druck von 33 Gigapascal, um das Rhenium-Nitrid-Pernitid herzustellen. Zuvor war für die Herstellung noch ein Druck von 40 bis 90 Gigapascal notwendig. Um Materialsynthesen zu testen und herzustellen, ist die Arbeit mit der Großvolumenpresse von großer Bedeutung.

Die Ergebnisse der Bayreuther Forscher haben nicht nur die Ansichten über etwaige Materialien auf den Kopf gestellt. Vielmehr könnte das neue Verfahren in Zukunft einen großen Einfluss auf die Entwicklung weiterer Materialen mit ähnlichen Eigenschaften haben. Die Herstellung von Rhenium-Nitrid-Pernitrid hat also Tür zu weiterführenden theoretischen sowie experimentellen Arbeiten im Bereich der Hochdruckmaterialsynthese aufgestoßen. Die Zukunft des Rhenium-Nitrid-Pernitrid ist dagegen eher unklar. Noch wissen die Forscher nicht, in welchen Gebieten es eingesetzt werden könnte.

 

Mehr aus der Materialforschung:

Ein Beitrag von:

  • ingenieur.de

    Technik, Karriere, News, das sind die drei Dinge, die Ingenieure brauchen.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.