Simulation im Labor 17.12.2013, 13:22 Uhr

Mini-Meteorite explodieren mit 30.000 km/h auf Sandsteinblock

Um mehr über die Entstehung der Galaxis zu erfahren, schießen Wissenschaftler im Labor Mini-Meteoriten auf Sandsteinblöcke. Die anschließende Ultraschall-Untersuchung zeigt: Unterirdische Schäden sind weitaus größer, als bisher bei natürlichen Kratern dokumentiert. 

Für das Auge sichtbar ist ein Krater, der sechs Zentimeter breit und einen Zentimeter tief ist. Doch der Ultraschall-Tomograph verrät: Die Zone, in der im Inneren des Sandsteinblocks Risse verlaufen, ist achtmal größer. 

Für das Auge sichtbar ist ein Krater, der sechs Zentimeter breit und einen Zentimeter tief ist. Doch der Ultraschall-Tomograph verrät: Die Zone, in der im Inneren des Sandsteinblocks Risse verlaufen, ist achtmal größer. 

Foto: Technische Universität München

Kollisionen von Himmelskörpern zählen zu den wichtigsten Entstehungsprozessen unserer Galaxie. Gerade Meteoritenkrater auf der Erde sind Millionen Jahre alte Zeitzeugen und somit für Wissenschaftler eine potentielle Goldgrube. Gäbe es da nicht ein Problem: „Bei natürlichen Kratern können wir oft nur Vermutungen darüber anstellen, welche Schäden von dem Meteoriteneinschlag selbst stammen und welche Risse nachträglich durch die Verwitterung des Gesteins entstanden sind“, erklärt Christian Große. Der Professor für Zerstörungsfreie Prüfung an der Technischen Universität München stellt deswegen im Labor Meteoriteneinschläge nach, um mehr über das Schadensverhalten zu erfahren.

Mini-Meteorit trifft mit 30.000 km/h auf Sandsteinblock

Er und sein Team aus Geowissenschaftlern, Physikern und Ingenieuren schießen dabei eine ein Zentimeter große Metallkugel mit 30.000 km/h auf einen Sandsteinblock. Dadurch entsteht ein Mini-Krater, der sechs Zentimeter breit und einen Zentimeter tief ist. Doch die Forscher trauen wortwörtlich ihren Augen nicht. Sie vermuten, dass der Schaden im Inneren des Umgebungsbereiches noch weitaus größer ausfällt.

Top Stellenangebote

Zur Jobbörse
Sandvik Mining and Construction Deutschland GmbH-Firmenlogo
Technical Sales Manager (m/f/d) Sandvik Mining and Construction Deutschland GmbH
Darmstadt Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Wirtschaftsjurist*in / Ingenieur*in (m/w/d) für Contract & Claimsmanagement in Energieprojekten THOST Projektmanagement GmbH
Berlin, Hamburg, Hannover Zum Job 
SWM Services GmbH-Firmenlogo
Ingenieur*in Energieerzeugung (m/w/d) SWM Services GmbH
München Zum Job 
Netzgesellschaft Gütersloh mbH-Firmenlogo
Leiter (m/w/d) Netzmanagement Netzgesellschaft Gütersloh mbH
Gütersloh Zum Job 
Richard Liesegang GmbH & Co. KG-Firmenlogo
Projektleiter/-in (m/w/d) Industrieabbruch Richard Liesegang GmbH & Co. KG
Hürth, bundesweit Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Projektleiter*in / Senior Projektmanager*in (m/w/d) Bau- / Immobilienprojekte THOST Projektmanagement GmbH
Pforzheim, Stuttgart Zum Job 
Stadtwerke München GmbH-Firmenlogo
Ingenieur*innen (m/w/d) Stadtwerke München GmbH
München Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Ingenieur*in (m/w/d) in der Terminplanung (Oracle Primavera) für Industrieprojekte THOST Projektmanagement GmbH
Mannheim, München, Stuttgart, Memmingen, Freiburg Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Projektleiter*in / Projektmanager*in (m/w/d) Bereich Bau / Immobilien THOST Projektmanagement GmbH
Stuttgart,Pforzheim Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Ingenieur*in / Projektmanager*in (m/w/d) für Bauprojekte THOST Projektmanagement GmbH
München Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Ingenieur*in (m/w/d) in der Projektsteuerung THOST Projektmanagement GmbH
Burghausen,München,Memmingen Zum Job 
Bundesverband Porenbetonindustrie e.V.-Firmenlogo
Bauingenieur / Wirtschaftsingenieur (m/w/d) als Referent Technik und Normung Bundesverband Porenbetonindustrie e.V.
swa Netze GmbH-Firmenlogo
Ingenieur (m/w/d) Elektrotechnik / Energietechnik für Netz- und Anlagenbau Strom swa Netze GmbH
Augsburg Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Wirtschaftsjurist*in / Ingenieur*in (m/w/d) für Contract & Claimsmanagement in Projekten der Energiewende THOST Projektmanagement GmbH
Freiburg im Breisgau, Mannheim, München, Stuttgart, Memmingen Zum Job 
DEKRA Automobil GmbH-Firmenlogo
Sachverständiger vorbeugender Brandschutz (m/w/d) NRW DEKRA Automobil GmbH
verschiedene Standorte Zum Job 
DEKRA Automobil GmbH-Firmenlogo
Sachverständiger Gebäudetechnik - Lüftungsanlagen & Rauchabzugsanlagen (m/w/d) NRW DEKRA Automobil GmbH
Verschiedene Standorte Zum Job 
FFG Flensburger Fahrzeugbau Gesellschaft mbH-Firmenlogo
Elektrokonstrukteur/ Techniker (m/w/d) für Funkanlagen FFG Flensburger Fahrzeugbau Gesellschaft mbH
Flensburg Zum Job 
DEKRA Automobil GmbH-Firmenlogo
Sachverständiger Druckbehälter & Anlagen (m/w/d) NRW DEKRA Automobil GmbH
verschiedene Standorte Zum Job 
HumanOptics Holding AG-Firmenlogo
Techniker / Ingenieur Prozessentwicklung (m/w/d) HumanOptics Holding AG
Sankt Augustin Zum Job 
Stadtwerke Leipzig GmbH-Firmenlogo
Ingenieur als Teamleitung Projektentwicklung - Erzeugungstechnologien (m/w/d) Stadtwerke Leipzig GmbH
Leipzig Zum Job 

Untersuchung des Kraters im Ultraschall-Tomographen

Mit dem Tomographen können sie Grad und Ausbreitung verborgener Risse im Gestein erfassen, ohne den experimentellen Krater zu beschädigen. Das Gerät schickt dafür ein akustisches Signal mit einer bestimmten Frequenz durch den Sandsteinblock. In der Luft von Rissen und Spalten bewegt sich der Schall mit rund 300 Metern pro Sekunde zehnmal langsamer als im Stein. Dadurch entstehen an diesen Stellen Signale mit größeren Amplituden.

Ergebnisse des Ultraschalls nach dem Einschlag eines Meteroiten-Modells. Rechts: Die roten Linien zeigen Risse im Gestein. Links: numerisches Modell. Der rote Bereich zeigt poröses Gestein. 

Ergebnisse des Ultraschalls nach dem Einschlag eines Meteroiten-Modells. Rechts: Die roten Linien zeigen Risse im Gestein. Links: numerisches Modell. Der rote Bereich zeigt poröses Gestein.

Quelle: Museum für Naturkunde Berlin / MEMIN

Die Wissenschaftler können nun mit diesen Signalen eine Karte anfertigen, die den ganzen Schaden des Mini-Meteoriten darstellt. Und sie staunen nicht schlecht. Denn bis zu achtmal breiter als der eigentliche Krater ist die Zone, in der unterirdisch Risse und Spalten verlaufen. „Die Kollision von Himmelskörpern gehört zu den wichtigsten Prozessen bei der Entstehung unserer Galaxie. Mit den Kraterexperimenten können wir auch ihre Wirkung auf die Erde besser abschätzen.“

Experimente mit Schussenergie und Einschlagswinkel

Mit Hilfe des Tomographen können die Wissenschaftler auch untersuchen, wie sich Größe, Energie und Einschlagswinkel des Meteoriten auf die Beschaffenheit der unterirdischen Schädigung auswirken. „Bei einem senkrechten Aufprall können wir beispielsweise eine halbkugelförmige Schädigungszone erfassen“, sagt Große. „Tritt der Meteorit schräg auf, kann das anders aussehen.“ Im nächsten Schritt werden die Forscher deshalb Schussenergie und Einschlagswinkel der Mini-Meteorite verändern – und damit auch den unterirdischen Teil der Krater.

Die Forschergruppe um Professor Große heißt Memin, eine Abkürzung für Multidisciplinary Experimental and Modeling Impact Crater Research Network. Beteiligt sind auch das Museum für Naturkunde in Berlin, das Fraunhofer Institut für Kurzzeitdynamik Freiburg, die Universität Freiburg, das Geoforschungszentrum Potsdam, die Technische Universität München, die Universität Münster und die University of California in Berkeley. Die Deutsche Forschungsgemeinschaft (DFG) finanziert das Projekt bis mindestens 2016.

 

Ein Beitrag von:

  • Patrick Schroeder

    Patrick Schroeder arbeitet als freiberuflicher Journalist für Zeitschriften und Onlinemagazine wie die VDI Nachrichten und Ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.