Werkzeug für Materialforscher 02.10.2013, 12:29 Uhr

Elektronen reiten auf der Welle

Teilchenbeschleuniger, die heute Kilometer lang sind, können bei gleicher Leistung auf wenige Meter schrumpfen. Der neue Baustoff ist Glas oder Silizium.

Die Elektronen (blau) werden so abgeschossen, dass sie über die eingeritzte Glasoberfläche streifen. Die Lichtwellen (rot) bringen sie auf ein höheres Tempo. 

Die Elektronen (blau) werden so abgeschossen, dass sie über die eingeritzte Glasoberfläche streifen. Die Lichtwellen (rot) bringen sie auf ein höheres Tempo. 

Foto: MPG

Surfer träumen stets von der perfekten Welle, die sie weit über das Wasser trägt bis hin zum Strand. Physiker in Garching bei München haben sie gefunden, und sie können sie immer wieder in Gang setzen. Sie beschleunigen allerdings keinen Surfer, sondern Elektronen. Diese reiten auf einer Welle aus Licht und werden dabei immer schneller.

Die Wissenschaftler haben den Grundstein gelegt für neuartige Teilchenbeschleuniger, die nur noch ein paar Meter lang sind und dennoch die gleiche Leistung bringen wie heutige Linearbeschleuniger, die ein paar Kilometer lang sind. Letztlich werden sie sie sogar übertreffen. Damit haben Materialforscher, Kernphysiker und Biotechniker ein Werkzeug, das überall aufgebaut und genutzt werden kann. Experimentierzeiten an Linearbeschleunigern sind dagegen äußerst knapp, weil es weltweit nur wenige Anlagen gibt. Deshalb stehen die Forscher oft Monate lang in der Warteschleife. Auf hohe Geschwindigkeit beschleunigte Elektronen und andere winzige Partikel können feinste Strukturen in lebendem und totem Material sichtbar machen.

John Breuer und Peter Hommelhoff vom Max-Planck-Institut für Plasmaphysik haben den Aufbau des Teilchenbeschleunigers grundlegend verändert. In herkömmlichen Anlagen beschleunigen elektromagnetische Felder die Partikel. Diese werden mit Bauteilen aus Metall erzeugt. Je größer die Felder, desto schneller werden die Partikel. Es gibt allerdings eine Obergrenze, bei der die metallischen Baugruppen beschädigt werden.

Metallfreie Werkstoffe wie Glas oder Silizium sind völlig unempfindlich gegenüber elektrischen Feldern. Die Garchinger Physiker ritzten auf einer Länge von zwei hundertstel Millimetern feine Kerben in die Oberfläche eine Glasstückchens. Dabei hielten sie einen Abstand von exakt 750 Nanometer ein – ein Nanometer ist ein Millionstel Millimeter. Dieses Beugungsgitter, wie es fachmännisch genannt wird, lenkt Licht, das senkrecht eintrifft, in verschiedene Richtungen ab. Eine dieser Richtungen befindet sich parallel zur Oberfläche. Genau diesen Lichtteilchenstrom nutzen die Physiker, um Elektronen, die hineingeschossen werden, zu beschleunigen. Sie reiten gewissermaßen auf der Lichtwelle. Zeitgleich mit Forschern der Universität Stanford und des SLAC National Accelerator Laboratory im kalifornischen Menlo Park haben die Garchinger es als erste geschafft, Elektronen auf diese Weise zu beschleunigen.

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
Neovii Biotech GmbH-Firmenlogo
Qualification Engineer (m/w/d) Neovii Biotech GmbH
Gräfelfing Zum Job 
Sauer Compressors-Firmenlogo
Entwicklungsingenieur (m/w/d) Sauer Compressors
Heidrive GmbH-Firmenlogo
Entwicklungsingenieur Elektrotechnik (m/w/d) Heidrive GmbH
Kelheim Zum Job 
Niedersachsen.next GmbH-Firmenlogo
Themenmanager Mobilität und Digitalisierung | Mobilitätskonzepte (m/w/d) Niedersachsen.next GmbH
Hannover Zum Job 
Universität Duisburg-Essen Campus Duisburg-Firmenlogo
13 positions for PhD candidates (f/m/d) Universität Duisburg-Essen Campus Duisburg
Duisburg Zum Job 
Bundesamt für das Personalmanagement der Bundeswehr-Firmenlogo
Ingenieurin / Ingenieur mit Bachelor (m/w/d) Beamtenausbildung Bundesamt für das Personalmanagement der Bundeswehr
verschiedene Standorte Zum Job 
Bergische Universität Wuppertal-Firmenlogo
Research Assistant (postdoc) in the field of additive manufacturing of metals Bergische Universität Wuppertal
Wuppertal Zum Job 
MICON Gruppe-Firmenlogo
Ingenieur (m/w/d) MICON Gruppe
Nienhagen Zum Job 
Steinmeyer Mechatronik GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Steinmeyer Mechatronik GmbH
Dresden Zum Job 
Max-Planck-Institut für Astronomie-Firmenlogo
Astronom*in / Physiker*in / Ingenieur*in (m/w/d) für Adaptive Optik Max-Planck-Institut für Astronomie
Heidelberg Zum Job 
Technische Hochschule Augsburg-Firmenlogo
Professur für verfahrenstechnische Produktion Technische Hochschule Augsburg
Augsburg Zum Job 
MAX-DELBRÜCK-CENTRUM FÜR MOLEKULARE MEDIZIN-Firmenlogo
Ingenieur*in (Gebäude- u. Energietechnik) für das Helmholtz Kompetenznetzwerk Klimagerecht Bauen MAX-DELBRÜCK-CENTRUM FÜR MOLEKULARE MEDIZIN
Karlsruher Institut für Technologie-Firmenlogo
Ingenieurin / Ingenieur (w/m/d) im Bereich mechanische Entwicklung und Projektleitung Karlsruher Institut für Technologie
Eggenstein-Leopoldshafen Zum Job 
Karlsruher Institut für Technologie (KIT)-Firmenlogo
Universitätsprofessur (W3) Intelligente rekonfigurierbare Produktionsmaschinen Karlsruher Institut für Technologie (KIT)
Karlsruhe Zum Job 
Bundeswehr-Firmenlogo
Ingenieurin / Ingenieur mit Bachelor (m/w/d) Beamtenausbildung Bundeswehr
verschiedene Standorte Zum Job 
Nitto Advanced Film Gronau GmbH-Firmenlogo
Ingenieur (w/m/d) Verfahrenstechnik / Chemie / Physik als Entwicklungsingenieur Nitto Advanced Film Gronau GmbH
Hochschule Osnabrück-Firmenlogo
Tandem-Professur Robotik, Data Science and AI, Digitalisierte Wertschöpfungsprozesse Hochschule Osnabrück
Osnabrück, Lingen Zum Job 
Tagueri AG-Firmenlogo
(Junior) Consultant Funktionale Sicherheit (m/w/d)* Tagueri AG
Stuttgart Zum Job 
ANDRITZ Separation GmbH-Firmenlogo
Automatisierungsingenieur (m/w/d) für Dynamic Crossflow-Filter ANDRITZ Separation GmbH
Vierkirchen Zum Job 
Hochschule Angewandte Wissenschaften München-Firmenlogo
Wissenschaftliche Mitarbeiterin oder Wissenschaftlicher Mitarbeiter zum Thema "Flexible Wärmepumpe mit integriertem Wärmespeicher" (m/w/d) Hochschule Angewandte Wissenschaften München
München Zum Job 

Vorbild ist die Chipproduktion

Der winzige Beschleuniger des deutschen Teams schafft hochgerechnet 25 Megaelektronenvolt pro Meter, das ist etwa die gleiche Beschleunigungskraft wie die konventioneller Anlagen. Um mehr zu erreichen müsste der Abstand der Kerben auf der gläsernen Oberfläche immer größer werden. Die Max-Planck-Forscher können sich vorstellen, das Glas gegen Silizium auszutauschen, dessen Oberfläche sich mit den Belichtungs- und Ätztechniken, die bei der Herstellung von Speicherchips und Mikroprozessoren verwendet werden, leichter bearbeiten lässt.

Als wichtigsten Vorteil der neuen Methode nennt Breuer die leichte Skalierbarkeit des Verfahrens. Dass bedeutet, dass mehrere dieser kleinen Beschleuniger hintereinander geschaltet werden können. Die Elektronen, die aus einer Einheit herausgeschossen kommen, werden in der jeweils nächsten weiter beschleunigt.

 

Ein Beitrag von:

  • Wolfgang Kempkens

    Wolfgang Kempkens studierte an der RWTH Aachen Elektrotechnik und schloss mit dem Diplom ab. Er arbeitete bei einer Tageszeitung und einem Magazin, ehe er sich als freier Journalist etablierte. Er beschäftigt sich vor allem mit Umwelt-, Energie- und Technikthemen.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.