Automatisiertes Fahren 28.11.2018, 06:25 Uhr

Bosch entwickelt Sensor zur Positionsbestimmung

Selbstfahrende Fahrzeuge müssen jederzeit exakt lokalisiert werden können, damit sie sich im Verkehr sicher bewegen. Bosch hat dafür jetzt einen eigenen Bewegungs- und Positionssensor entwickelt.

Illustration des selbstfahrenden Autos

Das Auto erkennt die Straße und sein Umfeld, während korrigierte Satellitendaten seine Position genau bestimmen und Sensoren die Bewegungen des Fahrzeugs erfassen.

Foto: Bosch

Verzögerte Reaktionen, Unaufmerksamkeit, Fehleinschätzungen – all das gibt es bei einem gut programmierten Computer nicht. Theoretisch gelten selbstfahrende Autos daher als besonders sicher. Zumindest im Vergleich zu einem Menschen am Lenkrad, der auch mal vor sich hin träumt. In der Praxis müssen jedoch noch einige Herausforderungen bewältigt werden, ehe automatisiertes Fahren den Verkehr revolutionieren kann. Als eine der größten Schwierigkeiten gilt die genaue Lokalisierung der jeweiligen Fahrzeuge. Mit einem eigenen Bewegungs- und Positionssensor möchte Bosch dieses Problem lösen.

Kombination aus satellitengestützter Navigation und Sensordaten

Das System, das Bosch für die Lokalisierung selbstfahrender Autos entwickelt hat, ist aus mehreren Komponenten zusammengesetzt: Hardware, Software und Services sollen sich ergänzen. Herzstück ist der Bewegungs- und Positionssensor, der Signale des Globalen Navigationssatellitensystems (GNSS) empfängt und so die Position eines automatisierten Fahrzeugs grundsätzlich ermittelt. Allerdings fliegen die GNSS-Satelliten in einer Entfernung von 25.000 Kilometern um die Erde und erreichen dabei eine Geschwindigkeit von unvorstellbaren 4.000 Metern pro Sekunde, also 14.400 Stundenkilometern. Zusätzlich werden die Signale durch die verschiedenen Schichten in der Erdatmosphäre verfälscht. Mit anderen Worten: Die Daten sind ungenau. Sie reichen zwar für ein handelsübliches Navigationssystem aus, fürs automatisierte Fahren werden aber exaktere Werte benötigt.

Top Stellenangebote

Zur Jobbörse
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
MB Global Engineering GmbH & Co. KG-Firmenlogo
Projektleiter Elektrotechnik (m/w/d) MB Global Engineering GmbH & Co. KG
Darmstadt Zum Job 
Nitto Advanced Film Gronau GmbH-Firmenlogo
Projektingenieur (m/w/d) im Bereich Maschinen- und Anlagentechnik Nitto Advanced Film Gronau GmbH
Städtische Wohnungsgesellschaft Eisenach mbH-Firmenlogo
Bauingenieur Hochbau / Architekt (m/w/d) Städtische Wohnungsgesellschaft Eisenach mbH
Eisenach Zum Job 
IT-Consult Halle GmbH-Firmenlogo
Trainee SAP HCM / Personalwirtschaft (m/w/d) IT-Consult Halle GmbH
Halle (Saale) Zum Job 
Regierungspräsidium Freiburg-Firmenlogo
Bachelor / Dipl. Ing. (FH) (w/m/d) der Fachrichtung Wasserwirtschaft, Umwelt, Landespflege oder vergleichbar Regierungspräsidium Freiburg
Freiburg im Breisgau Zum Job 
Dorsch Gruppe-Firmenlogo
Projektleiter (m/w/d) Tragwerksplanung mit Perspektive auf Fachbereichsleitung Dorsch Gruppe
Wiesbaden Zum Job 
Clariant SE-Firmenlogo
Techniker* für Automatisierungstechnik Clariant SE
Oberhausen Zum Job 
Die Autobahn GmbH des Bundes, Niederlassung Südbayern-Firmenlogo
Projektingenieur für Brückenbau / Tunnelbau / Ingenieurbau (w/m/d) Die Autobahn GmbH des Bundes, Niederlassung Südbayern
München Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieurin oder Bauingenieur in der Schlichtungsstelle (w/m/d) Die Autobahn GmbH des Bundes
Hannover Zum Job 
Big Dutchman International GmbH-Firmenlogo
Ingenieur / Techniker / Meister (m/w/d) Big Dutchman International GmbH
BOGE KOMPRESSOREN Otto Boge GmbH & Co. KG-Firmenlogo
Entwickler / Konstrukteur für die Verdichterentwicklung (m/w/x) BOGE KOMPRESSOREN Otto Boge GmbH & Co. KG
Großenhain Zum Job 
Griesemann Gruppe-Firmenlogo
Ingenieur Verfahrenstechnik / Prozessingenieur (m/w/d) Griesemann Gruppe
Wesseling, Köln Zum Job 
Energieversorgung Halle Netz GmbH-Firmenlogo
Fachingenieur Netzbetrieb Strom (m/w/d) Energieversorgung Halle Netz GmbH
Halle (Saale) Zum Job 
über ifp | Executive Search. Management Diagnostik.-Firmenlogo
COO (m/w/d) über ifp | Executive Search. Management Diagnostik.
Norddeutschland Zum Job 
Hamburger Wasser-Firmenlogo
Ingenieur/Referent (m/w/d) Vergabe Ingenieur-/ Bauleistungen Hamburger Wasser
Hamburg Zum Job 
Möller Medical GmbH-Firmenlogo
Industrial Engineer (m/w/d) Möller Medical GmbH
THU Technische Hochschule Ulm-Firmenlogo
W2-Professur "Elektrifizierte Fahrzeugantriebssysteme" THU Technische Hochschule Ulm
MÜNZING CHEMIE GmbH-Firmenlogo
Prozessoptimierer (m/w/d) für die chemische Industrie MÜNZING CHEMIE GmbH
Elsteraue Zum Job 
Energieversorgung Halle Netz GmbH-Firmenlogo
Projektingenieur - Fernwärme/Energietechnik (m/w/d) Energieversorgung Halle Netz GmbH
Halle (Saale) Zum Job 

Bosch hat daher im vergangenen Jahr gemeinsam mit Geo++, Mitsubishi Electric und U-blox das Joint Venture Sapcorda gegründet. Ziel des Gemeinschaftsunternehmens ist es, die Abweichungen der GNSS-Positionsinformationen zu korrigieren. Das soll über ein Netzwerk aus exakt vermessenen Referenzstationen auf der Erde geschehen. Die daraus entstehenden Korrekturdaten gelangen über eine Cloud oder geostationäre Satelliten ins Auto.

Illustration der Arbeit des Positions- und Bewegungssensors

Ein komplexes System aus mehreren Komponenten soll dafür sorgen, dass ein selbstfahrendes Auto auf Spur bleibt.

Quelle: Bosch

Dort werden die Daten um weitere Informationen ergänzt: Spezielle Sensoren erfassen die Umdrehungen der Räder und den Winkel des Lenkrades. So ist es möglich, Richtung und Geschwindigkeit des autonomen Autos zu ermitteln. Bosch vergleicht das System mit dem menschlichen Tastsinn, der uns bei der Fortbewegung hilft. Der Bewegungs- und Positionssensor für autonome Fahrzeuge ist zusätzlich mit einer Inertialsensorik ausgestattet. Diese Technik ähnelt am ehesten dem menschlichen Gleichgewichtsorgan. Die Kombination aus diesen Informationen hilft dem System dabei, genau zu bestimmen, wo sich das automatisierte Fahrzeug hinbewegt. Das ist natürlich nur möglich, weil eine intelligente Software die eingehenden Daten verarbeitet.

Back-up-System bei Verbindungsabbruch: Karte mit Umfeldsensorik

Das klingt ausgereift. Doch was passiert, wenn die Satellitenverbindung ausfällt, weil das selbstfahrende Auto beispielsweise in einem Tunnel ist? Zumindest für einige Sekunden kann der Bewegungs- und Positionssensor die Lokalisierung des automatisierten Fahrzeugs aufrechterhalten. Ausgehend von der letzten bekannten Position wird diese anhand der Bewegungsdaten weiterhin berechnet. Bei einer längeren Unterbrechung kann die Straßensignatur von Bosch helfen.

Dieser Service greift auf bestehende Karten zurück und kombiniert sie mit einer Umfeldsensorik für autonome Autos. Die Fahrzeuge haben dafür unter anderem Video- und Radarsensoren an Bord, die stationäre Merkmale erfassen können, zum Beispiel Spurmarkierungen, Verkehrsschilder und Leitplanken. Ein Vorteil der Radarsensoren besteht darin, dass sie unabhängig von der Sicht arbeiten. Über ein Kommunikationsmodul im Auto werden die Informationen in eine Cloud hochgeladen, wo ein Programm eine eigenständige Kartenebene generiert, die wiederum Bestandteil einer hoch genauen Karte ist. Die automatisierten Fahrzeuge gleichen also während der Fahrt ab, ob die von ihnen erkannten Verkehrsschilder und Leitplanken mit den in der hoch genauen Karte hinterlegten Merkmalen übereinstimmen.

Automatisiertes Fahren als Zukunftstechnologie

„Services sind mindestens genauso wichtig für das automatisierte Fahren wie Hardware und Software“, sagt Bosch-Geschäftsführer Dirk Hoheisel. „Wir müssen alle drei Wege zeitgleich verfolgen, damit selbstfahrende Autos sicher und zuverlässig auf die Straßen kommen.“ Ganzheitliche Lösungen für das automatisierte Fahren sind ein wichtiges Ziel bei Bosch. Sie sollen der neuen Technologie langfristig zum Durchbruch verhelfen.

Stufe 0 – Driver only:

  1. Der Fahrer führt dauerhaft Längs- und Querführung aus.
  2. Kein eingreifendes Fahrsystem aktiv

Stufe 1 – Assistiert

  1. Der Fahrer führt dauerhaft Längs- oder Querführung aus.
  2. Das System übernimmt die jeweils andere Funktion.

Stufe 2 – Teilautomatisiert

  1. Der Fahrer muss das System dauerhaft überwachen
  2. Das System übernimmt Längs- und Querführung in einem spezifischen Anwendungsfall, etwa einem spezifischen Straßentyp, einem Geschwindigkeitsbereich oder einer speziellen Umfeldbedingung.

Stufe 3 – Hochautomatisiert

  1. Der Fahrer muss das System nicht mehr dauerhaft überwachen. Er muss aber potenziell in der Lage sein, zu übernehmen.
  2. Das System übernimmt Längs- und Querführung in einem spezifischen Anwendungsfall, erkennt Systemgrenzen und fordert den Fahrer zur Übernahme mit ausreichender Zeitreserve auf.

Stufe 4 – Vollautomatisiert

  1. Kein Fahrer erforderlich im spezifischen Anwendungsfall.
  2. Das System kann im spezifischen Anwendungsfall alle Situationen automatisch bewältigen.

Stufe 5 – Fahrerlos

  1. Von „Start“ bis „Ziel“ ist kein Fahrer erforderlich
  2. Das System übernimmt die Fahraufgabe vollumfänglich bei allen Straßentypen, Geschwindigkeitsbereichen und Umweltbedingungen.

Quelle: VDA

Weitere Themen:

Ein Beitrag von:

  • Nicole Lücke

    Nicole Lücke macht Wissenschaftsjournalismus für Forschungszentren und Hochschulen, berichtet von medizinischen Fachkongressen und betreut Kundenmagazine für Energieversorger. Sie ist Gesellschafterin von Content Qualitäten. Ihre Themen: Energie, Technik, Nachhaltigkeit, Medizin/Medizintechnik.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.