Frischer Wind 05.04.2024, 11:54 Uhr

Bewegliche Rotorblätter sollen Wirkungsgrad von vertikalen Windrädern verdreifachen

Ein Schweizer Forschungsteam arbeitet an vertikalen Windkraftanlagen, die den Wind besser ausnutzen, also einen höheren Wirkungsgrad haben.

Sébastien Le Fouest mit seiner motorisierten und mit Sensoren ausgestatteten Miniaturwindkraftanlage mit vertikaler Rotationsachse

Sébastien Le Fouest mit seiner motorisierten und mit Sensoren ausgestatteten Miniaturwindkraftanlage mit vertikaler Rotationsachse.

Foto: Alain Herzog / EPFL

Vertikale Windkraftanlagen haben den großen Vorteil, dass sie weniger Platz benötigen und leiser sind als herkömmliche Windkraftanlagen. Verwirbelungen und Turbulenzen bremsen bisher die Effizienz solcher Anlagen. Ein Schweizer Forschungsteam der École Polytechnique Fédérale de Lausanne (EPFL) um Karen Mulleners will nun mit beweglichen Rotorblättern die Physik austricksen und dreimal effizientere vertikale Windturbinen bauen. Unterstützt wird das Team dabei vom Schweizerischen Nationalfonds (SNF).

Vertikale Windkraftanlagen sollen Energiewende der Schweiz voranbringen

Die geringere Stromproduktion von Solaranlagen und Wasserkraftwerken in den Wintermonaten ist ein wesentliches Hindernis für die Umstellung auf erneuerbare Energien in der Schweiz. Die Windenergie, deren Ertrag sich in der kalten Jahreszeit verdoppeln kann, spielt daher eine potenziell wichtige Rolle bei der Energiewende. Die Herausforderung besteht jedoch darin, neue Standorte für Windkraftanlagen zu finden, da diese viel Fläche beanspruchen und Lärmbelästigungen verursachen können. Besonders problematisch ist dies in der Schweiz, wo dicht besiedelte Städte und schwer zugängliche oder geschützte Naturräume die Standortsuche erschweren.

Hier kommen Karen Mulleners und ihr Team ins Spiel. Die Forscherin von der EPFL interessiert sich für die Entwicklung von Windturbinen mit vertikaler Achse, so genannten Typ-H-Windturbinen. Diese Turbinen, deren Rotorblätter vertikal angeordnet sind und sich um eine zentrale Achse drehen, benötigen bei gleicher Rotorblattlänge nur ein Drittel der Fläche herkömmlicher Windturbinen. Außerdem sind sie deutlich leiser und durch ihre langsamere und berechenbarere Drehbewegung weniger gefährlich für Vögel. Ihre Bauweise macht sie ideal für die Erweiterung bestehender Windparks und für die Aufstellung in der Nähe von Siedlungsgebieten.

Dynamischer Strömungsabriss als Herausforderung

Die Entwicklung vertikaler Windturbinen war bisher mit einer physikalischen Herausforderung konfrontiert: dem so genannten dynamischen Strömungsabriss. Dieser tritt auf, wenn sich die Luftbewegung und -geschwindigkeit so ändert, dass die Luftströmung nicht mehr der Kontur eines Objekts folgt und sich hinter diesem Wirbel und Turbulenzen bilden.

Stellenangebote im Bereich Energie & Umwelt

Energie & Umwelt Jobs
Hochschule Reutlingen-Firmenlogo
Akademische:r Mitarbeiter:in "Wärmewende" (m/w/x) Hochschule Reutlingen
Reutlingen Zum Job 
IPH Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH-Firmenlogo
Ingenieur Elektrotechnik LV (m/w/d) IPH Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH
Berlin-Marzahn Zum Job 
Freie Universität Berlin-Firmenlogo
Ingenieur*in (m/w/d) für Gebäude- und Energietechnik als Gruppenleitung Freie Universität Berlin
Die Autobahn GmbH des Bundes-Firmenlogo
Servicetechniker (w/m/d) Die Autobahn GmbH des Bundes
München Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Techniker in der Tunnelüberwachung und Verkehrssteuerung (w/m/d) Die Autobahn GmbH des Bundes
München Zum Job 
Ostbayerische Technische Hochschule Amberg-Weiden (OTH)-Firmenlogo
Professur (m/w/d) der BesGr. W 2 für das Lehrgebiet Solar Energy and Building Automation Ostbayerische Technische Hochschule Amberg-Weiden (OTH)
Freie Universität Berlin-Firmenlogo
Referatsleiter*in (m/w/d) für die Betriebstechnik und die bauliche Unterhaltung (Ingenieur*in für Aufgaben des technischen Betriebes) Freie Universität Berlin
BG ETEM-Firmenlogo
Aufsichtsperson gemäß des § 18 SGB VII (m/w/d) für ein Aufsichtsgebiet in der Region Dinkelsbühl, Aalen, Schwäbisch-Hall in den Branchenkompetenzen Elektrotechnische Industrie und Feinmechanik BG ETEM
Nürnberg Zum Job 
Hochschule Esslingen - University of Applied Sciences-Firmenlogo
Professor:in (W2) für das Lehrgebiet "Automatisierungssysteme in Gebäude-, Energie- und Umwelttechnik" Hochschule Esslingen - University of Applied Sciences
Esslingen am Neckar Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Teamleitung Verkehrssicherheit (m/w/d) Die Autobahn GmbH des Bundes
Hannover Zum Job 
Broadcast Solutions GmbH-Firmenlogo
Elektroingenieur* in Vollzeit (m/w/d) Broadcast Solutions GmbH
Stadtreinigung Hamburg Anstalt des öffentlichen Rechts-Firmenlogo
Sachgebietsleitung (m/w/d) Deponietechnik Stadtreinigung Hamburg Anstalt des öffentlichen Rechts
Hamburg Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur Immissionsschutz (m/w/d) Die Autobahn GmbH des Bundes
Hohen Neuendorf Zum Job 
Regierungspräsidium Freiburg-Firmenlogo
Bachelor / Diplom (FH) Landespflege, Landschaftsplanung oder vergleichbar (planungsorientierte Ausrichtung) Regierungspräsidium Freiburg
Bad Säckingen, Donaueschingen, Singen Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Abfallexperte Bau/Stoffstrommanager (m/w/d) Die Autobahn GmbH des Bundes
Stuttgart Zum Job 
Bundesamt für Strahlenschutz-Firmenlogo
Ingenieur*in (m/w/d) Liegenschafts- und Gebäudemanagement Bundesamt für Strahlenschutz
Oberschleißheim (bei München), Salzgitter, Berlin Zum Job 
HAWK Hochschule für angewandte Wissenschaft und Kunst-Firmenlogo
Gebäudeenergieberater*in HAWK Hochschule für angewandte Wissenschaft und Kunst
Hildesheim Zum Job 
ONTRAS Gastransport GmbH-Firmenlogo
Ingenieur Maschinen- und Anlagentechnik (m/w/d) ONTRAS Gastransport GmbH
Leipzig Zum Job 
MAX-DELBRÜCK-CENTRUM FÜR MOLEKULARE MEDIZIN-Firmenlogo
Ingenieur*in (Gebäude- u. Energietechnik) für das Helmholtz Kompetenznetzwerk Klimagerecht Bauen MAX-DELBRÜCK-CENTRUM FÜR MOLEKULARE MEDIZIN
Technische Werke Emmerich am Rhein GmbH-Firmenlogo
Projektingenieur*in Kanalplanung / -bau Technische Werke Emmerich am Rhein GmbH
Emmerich am Rhein Zum Job 

Bei Windkraftanlagen tritt dieses Phänomen auf, sobald der Winkel zwischen Wind und Rotorblättern zu groß wird, was insbesondere bei vertikalachsigen Modellen ab einer bestimmten Windgeschwindigkeit der Fall ist. In einer Studie, die in der Fachzeitschrift Nature Communications veröffentlicht wurde, präsentiert das Team aus Lausanne eine Lösung für dieses Problem.

Bewegliche Rotorblätter sollen die Lösung sein

Karen Mulleners will das Problem des dynamischen Strömungsabrisses bei vertikalen Windturbinen mit verstellbaren Rotorblättern lösen. Das soll mit Motoren geschehen, die die Rotorblätter immer in der optimalen Position zum Wind halten. „Ein Schiff braucht eine Crew, die die Segel ausrichtet, um den Kurs zu halten. Stattet man die Rotorblätter von Windkraftanlagen mit kleinen Motoren aus, stellt man ihnen quasi einen Kapitän zur Seite, sodass auch sie sich den Bedingungen anpassen können“, erklärt Sébastien Le Fouest, Mitarbeiter von Karen Mulleners und Hauptautor der Studie.

Um die optimale Neigung der Rotorblätter für eine effiziente Rotation zu ermitteln, setzen Forschungslabors üblicherweise auf Computersimulationen. Aufgrund der komplexen und variablen Windströmungen um eine H-Typ-Windturbine sind solche Simulationen jedoch nicht immer ideal. Das Team in Lausanne entschied sich deshalb, ein Miniaturmodell mit einem einzigen Rotorblatt und integrierten Sensoren zu bauen, um die erzeugte Energie im Strömungskanal zu messen.

Zudem berechneten sie die Kräfte, die auf die Komponenten des Windradmodells wirken, und die Bewegungsbahnen der Luftteilchen. Mit diesem innovativen Experiment konnten die Forschenden die Auswirkungen verschiedener „Tänze des Windrades“, wie Le Fouest die Bewegungen nennt, untersuchen. „Ich erhalte innerhalb einer Minute Messungen, für die eine Simulation drei Wochen brauchen würde“, betont der Wissenschaftler. Nach fast drei Jahren Entwicklungsarbeit an diesem Testsystem hat sich der Aufwand für ihn gelohnt. „Diese Art experimenteller Optimierung sieht einfach aus, aber sie ist das Ergebnis von aussergewöhnlichem, kollektivem Engagement“, fügt Karen Mulleners hinzu.

Wirkungsgrad lässt sich verdreifachen

Nach der Fertigstellung des Systems führte das Forschungsteam mit Hilfe eines so genannten genetischen Algorithmus Tests mit Tausenden von Windbedingungen durch. So konnten sie die notwendige Anpassungsfähigkeit der Rotorblätter ermitteln, um ein ideales Gleichgewicht zwischen maximalem Energieertrag und Langlebigkeit der Anlage zu finden. Die Laborversuche zeigten, dass sich der Wirkungsgrad der Anlage dadurch potenziell verdreifachen lässt.

Um diese Ergebnisse auf einen industriellen Maßstab hochrechnen zu können, sind jedoch Tests mit mehreren Rotorblättern und in realer Größe erforderlich. „Unsere Daten zeigen, dass man sehr wahrscheinlich die Lebensdauer und den Wirkungsgrad traditioneller Windkraftanlagen erreichen oder sogar übertreffen könnt“, erklärt Sébastien Le Fouest. Diese Hypothese will der Forscher nun mit Unterstützung eines BRIDGE-Beitrags des Schweizerischen Nationalfonds (SNF) und der Innosuisse weiter untersuchen. Eine Zusammenarbeit mit einem Schweizer Unternehmen ist bereits angelaufen, um die Forschungsergebnisse an einem industriellen Prototyp zu testen.

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.