Angewandte Mathematik 15.05.2013, 16:00 Uhr

Geheimnis der Seifenblasen entschlüsselt

Das komplexe Verhalten von Seifenblasen in einem Schaum vorherzusagen, war bislang unmöglich. Jetzt haben amerikanische Mathematiker ein Gleichungsmodell vorgelegt, mit dem sie die Vorgänge im Schaum perfekt simulieren können.

Die kleine computergenerierte Ansammlung von Bläschen simuliert täuschend echt die Abläufe in echtem Schaum.

Die kleine computergenerierte Ansammlung von Bläschen simuliert täuschend echt die Abläufe in echtem Schaum.

Foto: Saye,Sethian/Berkeley University

Schön, delikat und vergänglich sind sie, die Schaumhauben auf dem Cappuccino und  dem frisch gezapften Bier. Ihr alltägliches Vorkommen macht sie allerdings aus wissenschaftlicher Sicht nicht weniger komplex. Bisher tat sich die Wissenschaft schwer damit, das komplizierte Verhalten der kleinen Schaumblasen, ihr Entstehen und Zerplatzen, in einem mathematischen Modell zu erfassen.

Zwei Wissenschaftlern im Fach der Angewandten Mathematik von der University in California, Berkeley, ist dies nun gelungen. „Es ist schwierig die mathematischen Modelle für Schäume zu entwickeln. Sie bestehen aus einzelnen Blasen, die sich oft gemeinsame Wände teilen und immer in Bewegung sind. Zudem sind die extrem unterschiedlichen Maßstäbe eine echte Herausforderung“, sagt James Sethian. Der Mathematikprofessor und sein Doktorand Robert Saye identifizierten zunächst drei wichtige Phasen in der Schaum-Entstehung.

Die Dynamik im Schaum ändert sich permanent

Zunächst arrangieren sich die Bläschen in neuen Formationen, dann fließt die Flüssigkeit über die dünnen Wände ab und schliesslich werden die Membrane so fein, dass die Blase platzt. „Die Dynamik im Schaum ändert sich dann noch einmal, je nach Anzahl der Bläschen darin“, erklärt Sethian. Die Wissenschaftler mussten also die Vorgänge in den Wänden der einzelnen Bläschen mathematisch beschreiben, aber auch die Prozesse und Wechselwirkungen im gesamten Schaumgebilde berücksichtigen.

Dafür teilten die Mathematiker die komplexe Problematik in etliche Gleichungen auf, die jeweils unterschiedliche Vorgänge im Schaum erfassen. Ein Satz von Gleichungen beschreibt, wie die Flüssigkeit durch die Einwirkung der Schwerkraft die Blasenwände hinabläuft und sie dadurch immer weiter ausdünnt. Ein zweiter Gleichungssatz befasst sich mit den Strömungen an den Kontaktstellen der einzelnen Blasen untereinander. Ein dritter erfasst die wackelige Umstrukturierung der Blasen im Schaum, nachdem eine oder mehrere geplatzt sind. Um eine möglichst realistische Simulation von Seifenblasen im Computer zu produzieren, fügten die Forscher zudem einen Satz Gleichungen hinzu, der die bunten, vom Licht auf der Blasenoberfläche erzeugten Schlieren nachbildet.

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
Neovii Biotech GmbH-Firmenlogo
Qualification Engineer (m/w/d) Neovii Biotech GmbH
Gräfelfing Zum Job 
Sauer Compressors-Firmenlogo
Entwicklungsingenieur (m/w/d) Sauer Compressors
Heidrive GmbH-Firmenlogo
Entwicklungsingenieur Elektrotechnik (m/w/d) Heidrive GmbH
Kelheim Zum Job 
Niedersachsen.next GmbH-Firmenlogo
Themenmanager Mobilität und Digitalisierung | Mobilitätskonzepte (m/w/d) Niedersachsen.next GmbH
Hannover Zum Job 
Universität Duisburg-Essen Campus Duisburg-Firmenlogo
13 positions for PhD candidates (f/m/d) Universität Duisburg-Essen Campus Duisburg
Duisburg Zum Job 
Bundesamt für das Personalmanagement der Bundeswehr-Firmenlogo
Ingenieurin / Ingenieur mit Bachelor (m/w/d) Beamtenausbildung Bundesamt für das Personalmanagement der Bundeswehr
verschiedene Standorte Zum Job 
Bergische Universität Wuppertal-Firmenlogo
Research Assistant (postdoc) in the field of additive manufacturing of metals Bergische Universität Wuppertal
Wuppertal Zum Job 
MICON Gruppe-Firmenlogo
Ingenieur (m/w/d) MICON Gruppe
Nienhagen Zum Job 
Steinmeyer Mechatronik GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Steinmeyer Mechatronik GmbH
Dresden Zum Job 
Max-Planck-Institut für Astronomie-Firmenlogo
Astronom*in / Physiker*in / Ingenieur*in (m/w/d) für Adaptive Optik Max-Planck-Institut für Astronomie
Heidelberg Zum Job 
Technische Hochschule Augsburg-Firmenlogo
Professur für verfahrenstechnische Produktion Technische Hochschule Augsburg
Augsburg Zum Job 
MAX-DELBRÜCK-CENTRUM FÜR MOLEKULARE MEDIZIN-Firmenlogo
Ingenieur*in (Gebäude- u. Energietechnik) für das Helmholtz Kompetenznetzwerk Klimagerecht Bauen MAX-DELBRÜCK-CENTRUM FÜR MOLEKULARE MEDIZIN
Karlsruher Institut für Technologie-Firmenlogo
Ingenieurin / Ingenieur (w/m/d) im Bereich mechanische Entwicklung und Projektleitung Karlsruher Institut für Technologie
Eggenstein-Leopoldshafen Zum Job 
Karlsruher Institut für Technologie (KIT)-Firmenlogo
Universitätsprofessur (W3) Intelligente rekonfigurierbare Produktionsmaschinen Karlsruher Institut für Technologie (KIT)
Karlsruhe Zum Job 
Bundeswehr-Firmenlogo
Ingenieurin / Ingenieur mit Bachelor (m/w/d) Beamtenausbildung Bundeswehr
verschiedene Standorte Zum Job 
Nitto Advanced Film Gronau GmbH-Firmenlogo
Ingenieur (w/m/d) Verfahrenstechnik / Chemie / Physik als Entwicklungsingenieur Nitto Advanced Film Gronau GmbH
Hochschule Osnabrück-Firmenlogo
Tandem-Professur Robotik, Data Science and AI, Digitalisierte Wertschöpfungsprozesse Hochschule Osnabrück
Osnabrück, Lingen Zum Job 
Tagueri AG-Firmenlogo
(Junior) Consultant Funktionale Sicherheit (m/w/d)* Tagueri AG
Stuttgart Zum Job 
ANDRITZ Separation GmbH-Firmenlogo
Automatisierungsingenieur (m/w/d) für Dynamic Crossflow-Filter ANDRITZ Separation GmbH
Vierkirchen Zum Job 
Hochschule Angewandte Wissenschaften München-Firmenlogo
Wissenschaftliche Mitarbeiterin oder Wissenschaftlicher Mitarbeiter zum Thema "Flexible Wärmepumpe mit integriertem Wärmespeicher" (m/w/d) Hochschule Angewandte Wissenschaften München
München Zum Job 

Ein Supercomputer rechnete an den Gleichungen fünf Tage lang

Um diesen kombinierten Satz von Gleichungen in eine naturnahe Simulation umzuwandeln, rechnete der Supercomputer am Lawrence Berkeley National Laboratory (LBNL) fünf Tage lang. Jetzt können die Mathematiker eine Schaumkugel aus mehreren Bläschen in einem computergenerierten Video täuschend echt imitieren. In der bewegten Simulation schwebt sie im Raum und ordnet sich immer wieder neu, wenn einzelne Blasen zerplatzen.

Die Anwendung ihres neuen Gleichungssatzes können sich die Wissenschaftler in der Praxis gut vorstellen. „Unsere Erkenntnisse helfen bei der Herstellung und beim Mischen von Schäumen aus Kunststoff und Metallen, aber auch bei der Modellierung von wachsenden Zellclustern“, erklärt Sethian. Auch für die Herstellung von Hartschäumen, wie sie etwa in Fahrradhelmen benutzt werden, könnten die vernetzten Gleichungen hilfreich sein. Generell lassen sie sich immer dann nutzen, wenn es darum geht, die Bewegungen einer großen Zahl von dynamischen Grenzflächen zu beschreiben, die miteinander verbunden sind.

 

Ein Beitrag von:

  • Gudrun von Schoenebeck

    Gudrun von Schoenebeck

    Gudrun von Schoenebeck ist seit 2001 journalistisch unterwegs in Print- und Online-Medien. Neben Architektur, Kunst und Design hat sie sich vor allem das spannende Gebiet der Raumfahrt erschlossen.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.