Erneuerbare Energien 01.09.2022, 07:00 Uhr

Überraschende Idee: Wie Salze die Leistung von Solarzellen verbessern

Farbstoffsolarzellen haben derzeit kommerziell noch wenig Bedeutung, verglichen mit anderen Zelltypen. Das könnte sich ändern, denn Forschende konnten eine Schwachstelle beheben.

Blätter im Sonnenlicht

Farbstoffsolarzellen arbeiten nach dem Vorbild der Photosynthese. Jetzt ist es gelungen, diese Zellen zu optimieren.

Foto: panthermedia.net/Pakhnyushchyy

Solarzellen entwickeln sich in vielen Ländern der Welt schnell zu einer der wichtigsten Methoden zur Erzeugung von sauberem, nachhaltigem Strom. Auch Deutschland setzt darauf – nicht nur als Strategie gegen den Klimawandel, sondern auch, um unabhängiger von Russlands Erdgas zu werden.

Ingenieurinnen und Ingenieure untersuchen etliche Zelltypen mit dem Ziel, den Wirkungsgrad zu optimieren. Allerdings steht die Technologie derzeit vor mehreren Herausforderungen, die ihre flächendeckende Anwendung einschränken. Bei Farbstoffsolarzellen verbessern niedrig schmelzende Salzmischungen elektrochemische Vorgänge, indem sich weniger Ablagerungen von Pigmenten bilden.

Top Stellenangebote

Zur Jobbörse
Harro Höfliger Verpackungsmaschinen GmbH-Firmenlogo
Mechaniker / Mechatroniker Sondermaschinenbau (m/w/d) Harro Höfliger Verpackungsmaschinen GmbH
verschiedene Standorte Zum Job 
Harro Höfliger Verpackungsmaschinen GmbH-Firmenlogo
Projektmanager für internationale Projekte (m/w/d) Harro Höfliger Verpackungsmaschinen GmbH
Satteldorf Zum Job 
Harro Höfliger Verpackungsmaschinen GmbH-Firmenlogo
Konstrukteur Maschinenbau (m/w/d) Harro Höfliger Verpackungsmaschinen GmbH
verschiedene Standorte Zum Job 
Harro Höfliger Verpackungsmaschinen GmbH-Firmenlogo
Softwareentwickler - Frontend (m/w/d) Harro Höfliger Verpackungsmaschinen GmbH
STERIS-Firmenlogo
Lead Talent Acquisition Partner STERIS
keine Angabe Zum Job 
E+E Elektronik-Firmenlogo
Vertriebsingenieur (m/w/d) im Außendienst E+E Elektronik
Vertriebsgebiet Neue Bundesländer Zum Job 
Harro Höfliger Verpackungsmaschinen GmbH-Firmenlogo
Projektierer (m/w/d) Harro Höfliger Verpackungsmaschinen GmbH
verschiedene Standorte Zum Job 
TTP Holding GmbH-Firmenlogo
Chemieingenieur / Verfahrensingenieur (m/w/d) 80% - 100% TTP Holding GmbH
Basel (Schweiz) Zum Job 
scanware electronic GmbH-Firmenlogo
Mitarbeiter (m/w/d) im technischer Vertriebsinnendienst scanware electronic GmbH
Bickenbach Zum Job 
DFS Deutsche Flugsicherung GmbH-Firmenlogo
Ingenieur* in der Instandsetzung und Entwicklung DFS Deutsche Flugsicherung GmbH
Langen (Hessen) Zum Job 
TTP Holding GmbH-Firmenlogo
Projektingenieur Pharmatechnik (m/w/d) 80% - 100% TTP Holding GmbH
Basel, Visp (Schweiz) Zum Job 
Dow-Firmenlogo
Campus Fresh Graduate - Electrical Engineer (m/f/d) Dow
Schkopau Zum Job 
TÜV Technische Überwachung Hessen GmbH-Firmenlogo
Sachverständiger für Brand- und Explosionsschutz (m/w/d) TÜV Technische Überwachung Hessen GmbH
Frankfurt am Main Zum Job 
Dow-Firmenlogo
Campus Internship - Process Engineering (Chemie-/Verfahrenstechnik) Dow
Prognost Systems GmbH-Firmenlogo
Elektroingenieur / Maschinenbauingenieur / Techniker (m/w/d) (Elektroniker, Elektrotechniker o. ä.) Prognost Systems GmbH
Dow-Firmenlogo
Jump-start Your Engineering Career at Dow - Talent Pool Dow
Schkopau Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur:in als Expertin oder Experte Kreuzungsprojekte und Qualitätsmanagement (w/m/d) Die Autobahn GmbH des Bundes
Hannover Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieurin oder Ingenieur (w/m/d) Vertragsmanagement Bauwerksprüfung Die Autobahn GmbH des Bundes
Hannover Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Teamleiter (w/m/d) im Projektteam Planung Die Autobahn GmbH des Bundes
RS Ingenieure GmbH & Co. KG-Firmenlogo
Bauingenieur als Tragwerksplaner (m/w/d) RS Ingenieure GmbH & Co. KG

Solarzellen nach dem Vorbild der Natur 

Zum Hintergrund: Im Fall der Farbstoffsolarzellen (dye-sensitized solar cells, DSSC), einer vielversprechenden Photovoltaiktechnologie, ist eines der Hauptprobleme die Farbstoffaggregation. Bei solchen Zellen handelt es sich um elektrochemische Systeme, welche die Photosynthese in Pflanzen nachahmen. Sie verwenden spezielle lichtempfindliche Farbstoffe, um Sonnenlicht in Strom umzuwandeln. Pflanzen nutzen Chlorophylle und Carotionoide. Sie absorbieren energiereiche Strahlung und wandeln sie in chemische Energie, Zucker und Stärke, um.

Das Prinzip nutzen Ingenieurinnen und Ingenieure auch bei Farbstoffsolarzellen. Im Idealfall sollte der Farbstoff gleichmäßig auf der Oberfläche einer Oxidelektrode hinter einer transparenten Schicht aufgebracht werden, damit die Energie des absorbierten Sonnenlichts leicht auf die Elektronen des Farbstoffs übertragen werden kann. Durch diesen Prozess werden freie Elektronen erzeugt, die einen externen Stromkreis mit Energie versorgen. Die meisten Farbstoffe neigen jedoch dazu, sich auf der Elektrodenoberfläche so zusammenzuballen, dass der gewünschte Fluss von Licht und elektrischen Ladungen behindert wird. Dies beeinträchtigt die Leistung von Farbstoffsolarzellen, was sich als schwer zu überwinden erwiesen hat.

Glücklicherweise hat ein Team unter der Leitung von Tomohiko Inomata, Professor am Nagoya Institute of Technology, Japan, gerade eine Lösung für dieses Problem gefunden. In ihrer kürzlich veröffentlichten Studie zeigten die Forschenden, dass bestimmte ionische Flüssigkeiten die Farbstoffaggregation in beeindruckendem Maße unterdrücken können. Zu den ionischen Flüssigkeiten zählen geschmolzene Salze, die bei relativ niedrigen Temperaturen flüssig sind. In der Flüssigkeit selbst befinden sich – wie zu erwarten – Kationen und Anionen als Ladungsträger.

Offshore-Stromerzeugung: Zwischen Windgeneratoren schwimmen Solarkraftwerke

Komplexe Mechanismen in ionischen Flüssigkeiten verbessern Solarzellen 

Aber wie schaffen ionische Flüssigkeiten das Kunststück, unerwünschte Agglomerationen zu unterbinden? Um den genauen Mechanismus zu ergründen, konzentrierten sich die Forscherinnen und Forscher auf zwei ionische Flüssigkeiten mit sehr unterschiedlichen Molekülgrößen und zwei Arten von Farbstoffen. Beide ionischen Flüssigkeiten wiesen eine ähnliche Molekularstruktur auf: einen „Anker“, der sich gut an die Elektrode bindet (Titandioxid, TiO2), eine Hauptpolymerkette, die diesen „Anker“ mit einem Phosphoratom verbindet, und drei zusätzliche kurze Polymerketten, die vom Phosphoratom und von der Hauptkette abstehen.

Die Forscher tauchten die TiO2-Elektroden in Lösungen mit unterschiedlichen Verhältnissen von Farbstoff zu ionischer Flüssigkeit und analysierten, wie die verschiedenen Moleküle an ihnen haften. Nachdem sie das Syntheseverfahren optimiert hatten, stellten sie fest, dass Farbstoffsolarzellen, die mit der ionischen Flüssigkeit mit einer längeren Molekülstruktur hergestellt wurden, eine bemerkenswert bessere Leistung aufwiesen als ihre Gegenstücke mit nicht modifizierten Oxidelektroden.

„Die räumlich sperrige Molekularstruktur der ionischen Flüssigkeiten fungiert als wirksames Anti-Aggregationsmittel, ohne die Menge des in der Elektrode gebundenen Farbstoffs wesentlich zu beeinträchtigen“, erklärt Inomata. „Am wichtigsten ist, dass die Einführung der größeren ionischen Flüssigkeit alle photovoltaischen Parameter der Farbstoffsolarzellen verbessert.“

Batterie: Neue Methode revolutioniert Produktion

Farbstoffsolarzellen für Praxisanwendungen optimieren

Wie geht es weiter? Obwohl ionische Flüssigkeiten in der Regel teuer sind, ist die Art und Weise, wie das Team sie einsetzt, in der Tat kosteneffizient. „Vereinfacht ausgedrückt besteht die Idee darin, ionische Flüssigkeiten nur auf den benötigten Teil des Geräts aufzutragen – in diesem Fall auf die Oberfläche der Elektrode“, erklärt Inomata.

Sein Team ist der Ansicht, dass der breite Einsatz von Elektroden, die mit ionischen Flüssigkeiten modifiziert wurden, den Weg für hochfunktionelle und dennoch erschwingliche Materialien für Solarzellen und katalytische Systeme ebnen könnte. Da die Struktur der ionischen Flüssigkeiten während ihrer Synthese eingestellt werden kann, bieten sie eine dringend benötigte Vielseitigkeit als Anti-Aggregationsmittel. Weitere Untersuchungen sind geplant. Die Forschenden hoffen jedenfalls, dass ihre Erkenntnisse zu besseren Solarzellen und langfristig zu neuen Möglichkeiten der Gewinnung regenerativer Energien führen.  

Mehr zum Thema Solarzellen:

Ein Beitrag von:

  • Michael van den Heuvel

    Michael van den Heuvel hat Chemie studiert. Unter anderem arbeitet er für Medscape, DocCheck, für die Universität München und für pharmazeutische Fachmagazine. Seit 2017 ist er selbstständiger Journalist und Gesellschafter von Content Qualitäten. Seine Themen: Chemie/physikalische Chemie, Energie, Umwelt, KI, Medizin/Medizintechnik.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.