Entwicklung vom MIT 17.10.2023, 07:00 Uhr

Innovatives System für solaren thermochemischen Wasserstoff

Ein Forschungsteam vom MIT will mit einem bahnbrechenden Reaktorsystem, das ausschließlich von der Sonne angetrieben wird, umweltfreundlichen, kohlenstofffreien Wasserstoffkraftstoff herstellen. Das Konzept soll die Sonnenenergie in einem ungewöhnlichen hohen Grad umwandeln.

Illustration

So sieht das Prinzip des neuen Systems zur Wasserstoff-Produktion aus.

Foto: MIT

Solarer thermochemischer Wasserstoff (STCH) ist eine völlig emissionsfreie Energieform, da er ausschließlich aus erneuerbarer Sonnenenergie erzeugt wird. Es gibt bereits viele STCH-Konzepte, doch sie haben in der Regel eines gemeinsam: Nur ein geringer Teil des einfallenden Sonnenlichts wird zur Herstellung von Wasserstoff genutzt. Forschende vom Massachusetts Institute of Technology (MIT) schätzten hingegen, dass ihr neues Design bis zu 40 Prozent der Solarenergie verwenden könnte – das wäre ein großer Schritt in Richtung solar erzeugter Kraftstoffe. Denn die höhere Effizienz könnte die Gesamtkosten des Systems senken und STCH zu einer potenziell skalierbaren, erschwinglichen Option machen, die vor allem im Schwerlastbereich dazu beiträgt, klimaschädliche Emissionen im Verkehrssektor zu senken.

Zweistufiges System zur Wasserstoff-Erzeugung

Ähnlich wie bei anderen Konzepten wird das MIT-System mit einer vorhandenen Solarwärmequelle gekoppelt, etwa mit einer konzentrierten Solaranlage (CSP): einer kreisförmigen Anordnung von Hunderten von Spiegeln, die das Sonnenlicht sammeln und zu einem zentralen Empfangsturm reflektieren. Ein STCH-System nimmt dann die Wärme des Empfängers auf und leitet sie zur Spaltung von Wasser und zur Erzeugung von Wasserstoff weiter. Dieser Prozess unterscheidet sich stark von der Elektrolyse, bei der Strom statt Wärme zur Wasserspaltung verwendet wird.

Das Herzstück eines STCH-Systems ist eine zweistufige thermochemische Reaktion. Im ersten Schritt wird Wasser in Form von Dampf mit einem Metall in Kontakt gebracht. Dadurch nimmt das Metall den Sauerstoff aus dem Dampf auf und lässt Wasserstoff zurück. Das ist vergleichbar mit dem Rosten von Eisen durch Wasser, läuft aber viel schneller ab. Sobald der Wasserstoff abgetrennt ist, wird das oxidierte (oder verrostete) Metall in einem Vakuum wieder erhitzt, wodurch der Rostprozess umgekehrt und das Metall regeneriert wird. Nachdem der Sauerstoff entfernt wurde, kann das Metall abgekühlt und erneut dem Dampf ausgesetzt werden, um weiteren Wasserstoff zu erzeugen. Dieser Prozess kann Hunderte von Malen wiederholt werden.

Wärmerückgewinnung für Effizienz entscheidend

Das MIT-System ist darauf ausgelegt, diesen Prozess zu optimieren. Das gesamte System ähnelt einer Reihe kastenförmiger Reaktoren, die auf einem kreisförmigen Gleis laufen. Diese Bahn soll um eine solarthermische Quelle verlaufen, etwa um einen CSP-Turm. In jedem Reaktor des Zuges wäre das Metall untergebracht, das den Redox- oder reversiblen Rostprozess durchläuft.

Stellenangebote im Bereich Energie & Umwelt

Energie & Umwelt Jobs
Deutsche Rentenversicherung Bund-Firmenlogo
Ingenieur*in Betrieb / technische Gebäudeausrüstung HKLS (m/w/div) Deutsche Rentenversicherung Bund
Berliner Stadtreinigungsbetriebe (BSR)-Firmenlogo
Projektingenieurinnen / Projektingenieure oder Projektleitungen Bauwesen (w/m/d) Berliner Stadtreinigungsbetriebe (BSR)
Die Autobahn GmbH des Bundes Niederlassung Nord-Firmenlogo
Abteilungsleitung Umweltplanung (w/m/d) Die Autobahn GmbH des Bundes Niederlassung Nord
TenneT TSO GmbH-Firmenlogo
Genehmigungsplaner (m/w/d) TenneT TSO GmbH
Kiel, Stockelsdorf Zum Job 
Netzgesellschaft Potsdam GmbH-Firmenlogo
Projektingenieur (m/w/d) Energietechnik - Umspannwerke/Hochspannungsfreileitung - Netzgesellschaft Potsdam GmbH
Potsdam Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Spezialistin oder Spezialist Faunistik (w/m/d) für den Bereich Brückenersatzneubau Die Autobahn GmbH des Bundes
Hannover Zum Job 
Chemische Fabrik Kreussler & Co. GmbH-Firmenlogo
Projektingenieur (m/w/d) Advanced Energy Solutions Chemische Fabrik Kreussler & Co. GmbH
Wiesbaden Zum Job 
Netzgesellschaft Potsdam GmbH-Firmenlogo
Ingenieur (m/w/d) Strategische Netzplanung Strom Netzgesellschaft Potsdam GmbH
Potsdam Zum Job 
RES Deutschland GmbH-Firmenlogo
Head of Engineering / Leitung technische Planung Wind- & Solarparks (m/w/d) RES Deutschland GmbH
Vörstetten Zum Job 
MEWA Textil-Service SE & Co. Management OHG-Firmenlogo
Projektingenieur (m/w/d) Elektrotechnik MEWA Textil-Service SE & Co. Management OHG
Wiesbaden Zum Job 
KÜBLER GmbH-Firmenlogo
Techniker / Ingenieur / Fachplaner / TGA (m/w/d) Heizungstechnik und Elektro KÜBLER GmbH
Ludwigshafen Zum Job 
Stadtwerke München GmbH-Firmenlogo
Vertragsmanager*in Großprojekte Mobilität (m/w/d) Stadtwerke München GmbH
München Zum Job 
Hamburger Hochbahn AG-Firmenlogo
Senior - Projektleiter Elektrotechnik Betriebsanlagen (w/m/d) Hamburger Hochbahn AG
Hamburg Zum Job 
Hochschule Angewandte Wissenschaften München-Firmenlogo
Professur für Energiewandler und Energiespeicher in der Fahrzeugtechnik (W2) Hochschule Angewandte Wissenschaften München
München Zum Job 
Birkenstock Productions Sachsen GmbH-Firmenlogo
Projektingenieur für Versorgungstechnik (TGA) (m/w/d) Birkenstock Productions Sachsen GmbH
Görlitz Zum Job 
Berliner Stadtreinigungsbetriebe (BSR)-Firmenlogo
Betriebsleiterin / Betriebsleiter (w/m/d) Biogasanlage Berliner Stadtreinigungsbetriebe (BSR)
Berlin-Ruhleben Zum Job 
TenneT TSO GmbH-Firmenlogo
Ingenieur als Projektleiter Leitungsbau (m/w/d) TenneT TSO GmbH
FUNKE Wärmeaustauscher Apparatebau GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) FUNKE Wärmeaustauscher Apparatebau GmbH
Gronau (Leine) Zum Job 
Berliner Stadtreinigung (BSR)-Firmenlogo
Mitarbeiter:in (w/m/d) strategisches Stoffstrom- und Anlagenmanagement Berliner Stadtreinigung (BSR)
BG ETEM-Firmenlogo
Ingenieur/-in (m/w/d) für den Außendienst als Aufsichtsperson BG ETEM
Stuttgart, Tuttlingen, Konstanz, Singen Zum Job 

Jeder Reaktor würde zunächst eine heiße Station durchlaufen, in der er der Sonnenwärme mit Temperaturen von bis zu 1.500 Grad Celsius ausgesetzt wäre. Diese extreme Hitze würde dem Metall des Reaktors den Sauerstoff entziehen. Das Metall befände sich dann in einem reduzierten Zustand, wäre also dazu bereit, Sauerstoff aus Dampf aufzunehmen. Dazu müsste der Reaktor in eine kühlere Station mit Temperaturen um die 1.000 Grad Celsius gebracht werden, wo er mit Wasserdampf beaufschlagt würde, um Wasserstoff zu erzeugen.

Was soll jedoch mit der Wärme geschehen, die der reduzierte Reaktor bei seiner Abkühlung abgibt? Ohne Rückgewinnung und Wiederverwendung dieser Wärme ist der Wirkungsgrad des Systems zu gering. Eine zweite Herausforderung besteht darin, ein energieeffizientes Vakuum zu erzeugen, in dem das Metall entrosten kann. Einige Prototypen erzeugen ein Vakuum mithilfe mechanischer Pumpen, die jedoch für eine groß angelegte Wasserstoffproduktion zu energie- und kostenintensiv wären.

Wirkungsgrad von bis zu 40 Prozent

So sieht die Lösung vom MIT aus: Um einen Großteil der Wärme zurückzugewinnen, sollen Reaktoren auf gegenüberliegenden Seiten der Kreisbahn durch Wärmestrahlung Wärme austauschen – heiße Reaktoren werden gekühlt, während kühle Reaktoren geheizt werden. Auf diese Weise bleibt die Wärme im System. Die Wissenschaftler und Wissenschaftlerinnen fügten noch eine zweite Gruppe von Reaktoren hinzu, die um den ersten Zug herum in die entgegengesetzte Richtung laufen. Dieser äußere Reaktorstrang würde bei allgemein kühleren Temperaturen arbeiten und dazu dienen, Sauerstoff aus dem heißeren inneren Strang zu evakuieren, ohne dass energieaufwendige mechanische Pumpen erforderlich wären.

Diese äußeren Reaktoren würden eine zweite Art von Metall enthalten, das ebenfalls leicht oxidieren kann. Während sie kreisen, würden die äußeren Reaktoren Sauerstoff aus den inneren Reaktoren absorbieren, wodurch das ursprüngliche Metall effektiv entrostet würde, ohne dass energieintensive Vakuumpumpen eingesetzt werden müssten. Beide Reaktorstränge würden kontinuierlich laufen und getrennte Ströme von reinem Wasserstoff und Sauerstoff erzeugen.

Die Forschenden führten detaillierte Simulationen des Konzepts durch und stellten fest, dass es den Wirkungsgrad der solarthermochemischen Wasserstofferzeugung erheblich steigern würde, und zwar auf 40 Prozent. Im nächsten Jahr wird das Team einen Prototyp des Systems bauen, den es in Anlagen für konzentrierte Solarenergie in Labors des Energieministeriums testen will, das das Projekt derzeit finanziert.

Ein Beitrag von:

  • Nicole Lücke

    Nicole Lücke macht Wissenschaftsjournalismus für Forschungszentren und Hochschulen, berichtet von medizinischen Fachkongressen und betreut Kundenmagazine für Energieversorger. Sie ist Gesellschafterin von Content Qualitäten. Ihre Themen: Energie, Technik, Nachhaltigkeit, Medizin/Medizintechnik.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.