Fraunhofer-Entwicklung 06.01.2021, 07:00 Uhr

Mit diesem innovativen Gerät lassen sich Medikamente leichter herstellen

Die Grignard-Reaktion gehört zu den wichtigsten Prinzipien, um organische Chemikalien herzustellen. Ein neuer Reaktor macht Synthesen flexibler und sicherer, aber auch leichter hochskalierbar.

Laborreaktor zur Grignard-Reagenzsynthese.
Foto: Fraunhofer IMM

Laborreaktor zur Grignard-Reagenzsynthese.

Foto: Fraunhofer IMM

Um Arzneimittel, Duftstoffe oder Aromen zu synthetisieren, ist die Grignard-Reaktion in der chemischen Industrie unverzichtbar. So findet man bei jeder zehnten Synthese der wichtigsten Pharmaka mindestens einen Syntheseschritt nach diesem Prinzip, teilweise sogar mehrere Grignard-Reaktionen. Namensgeber ist der französische Chemiker Victor Grignard (1871 bis 1935). Er untersuchte das später nach ihm benannte Prinzip ab 1899 und erhielt 1912 dafür den Nobelpreis für Chemie.

Seit rund 120 Jahren ist dieser Syntheseweg wichtig, um Kohlenstoff-Kohlenstoff-Bindungen zu knüpfen. Nur machen Grignard-Reaktionen bei der Anwendung zahlreiche Schwierigkeiten. Fraunhofer-Ingenieure haben jetzt einen innovativen, hochskalierbaren Reaktor mit Durchfluss entwickelt, um die Reaktion besser zu kontrollieren und um Ausbeuten zu verbessern.

Wertvolle Chemikalien aus Kohlendioxid gewinnen

Stärken und Schwächen der Grignard-Reaktion

Zum Hintergrund: Bei der Grignard-Reaktion versetzt man halogenierte organische Verbindungen, meist Bromide oder Iodide, seltener Chloride, mit metallischem Magnesium. Als Lösungsmittel eignen sich Ether, beispielsweise wasserfreien Diethylether oder wasserfreies Tetrahydrofuran. Dabei entsteht eine metallorganische Verbindung. Sie wird mit einer anderen Komponente, etwa einem Keton, umgesetzt. Wie mit einem Baukasten lassen sich größere Moleküle aus kleineren Komponenten herstellen. Kombiniert man mehrere Grignard-Reaktionen, entstehen komplexe Moleküle.

Stellenangebote im Bereich Chemieingenieurwesen

Chemieingenieurwesen Jobs
Landratsamt Schwäbisch Hall-Firmenlogo
Ingenieur als Sachbearbeiter Altlasten (m/w/d) Landratsamt Schwäbisch Hall
Schwäbisch Hall Zum Job 
Johns Manville Europe GmbH-Firmenlogo
Technology Leader (m/w/d) Nonwovens Europe Johns Manville Europe GmbH
Wertheim Zum Job 
Wacker Chemie AG-Firmenlogo
Prozessentwickler (w/m/d) Wacker Chemie AG
Nünchritz Zum Job 
BG ETEM - Berufsgenossenschaft Energie Textil Elektro Medienerzeugnisse-Firmenlogo
Ingenieur/in (m/w/d) für die Ermittlung von Berufskrankheiten BG ETEM - Berufsgenossenschaft Energie Textil Elektro Medienerzeugnisse
Stuttgart Zum Job 
3M Deutschland GmbH-Firmenlogo
Senior Capital Project Manager (m/f/d) 3M Deutschland GmbH
BG ETEM-Firmenlogo
Ingenieur/in (m/w/d) im Bereich Lüftungstechnik im Fachkompetenzcenter Gefahrstoffe BG ETEM
BG ETEM-Firmenlogo
Leitung (m/w/d) im Bereich Messtechnischer Dienst, Fachkompetenzcenter Gefahrstoffe BG ETEM
BAYERNOIL Raffineriegesellschaft mbH-Firmenlogo
Ingenieur (m/w/d) Technische Integrität BAYERNOIL Raffineriegesellschaft mbH
Neustadt an der Donau Zum Job 
WESSLING Consulting Engineering GmbH & Co. KG-Firmenlogo
Abteilungsleiter Gebäudeschadstoffe (m/w/d) WESSLING Consulting Engineering GmbH & Co. KG
Berlin-Adlershof Zum Job 
Graz University of Technology, Faculty of Technical Chemistry, Chemical and Process Engineering and Biotechnology, Institute of Process and Particle Engineering-Firmenlogo
Professorship for Particle Engineering and Solids Processing Graz University of Technology, Faculty of Technical Chemistry, Chemical and Process Engineering and Biotechnology, Institute of Process and Particle Engineering
Graz, Austria Zum Job 
Technische Hochschule Georg Agricola-Firmenlogo
Wissenschaftlicher Mitarbeiter (m/w/d) im Bereich Verfahrenstechnik Technische Hochschule Georg Agricola
RENOLIT SE-Firmenlogo
Ingenieur (m/w/d) Kunststoff- / Verfahrenstechnik / Chemie RENOLIT SE
Frankenthal Zum Job 
Deutsche Akkreditierungsstelle GmbH (DAkkS)-Firmenlogo
Expertin / Experte für Kalibrierlaboratorien (w/m/d) - DIN EN/ISO IEC 17025 Deutsche Akkreditierungsstelle GmbH (DAkkS)
Berlin, Home Office Zum Job 
Universität Stuttgart-Firmenlogo
W3-Professur "Chemische Verfahrenstechnik" Universität Stuttgart
Stuttgart Zum Job 
Hochschule Angewandte Wissenschaften München-Firmenlogo
Mitarbeiterin oder Mitarbeiter für das Labor für Werkstofftechnik (m/w/d) Hochschule Angewandte Wissenschaften München
München Zum Job 
Mercer Rosenthal GmbH-Firmenlogo
Prozessingenieur Rückgewinnung (m/w/d) Mercer Rosenthal GmbH
Rosenthal am Rennsteig Zum Job 
Griesemann Gruppe-Firmenlogo
Ingenieur Verfahrenstechnik (m/w/d) - Schwerpunkt Prozessentwicklung Griesemann Gruppe
Köln, Wesseling Zum Job 
Behörde für Umwelt, Klima, Energie und Agrarwirtschaft`-Firmenlogo
(Hydro-)Geolog:in oder Ingenieur:in Altlasten Behörde für Umwelt, Klima, Energie und Agrarwirtschaft`
Hamburg Zum Job 
Regierungspräsidium Freiburg-Firmenlogo
Bachelor / Diplom (FH) Bau-, Chemie-, Umweltingenieurwesen, Verfahrenstechnik oder vergleichbar Regierungspräsidium Freiburg
Freiburg im Breisgau Zum Job 
Solventum Germany GmbH-Firmenlogo
Projektingenieur Verfahrenstechnik / Chemie / Chemieingenieur (m/w/*) Solventum Germany GmbH
Bad Grönenbach-Seefeld Zum Job 

Diesen Vorteilen stehen einige Schwächen der Reaktion gegenüber: Grignard-Synthesen umfassen die feste Phase, metallisches Magnesium, und die gelöste Phase mit organischen Halogeniden. Es kann dauern, bis solche Zwei-Phasen-Reaktionen „anspringen“. Dann laufen sie jedoch schnell und produzieren viel Wärme, die abgeführt werden muss. Um dies zu steuern, setzt man organische Halogenide nur langsam unter starkem Rühren zu, was zu einer weiteren Zeitverzögerung führt. Außerdem treten Verunreinigungen auf, wenn beispielsweise das gewünschte Syntheseprodukt erneut mit der metallorganischen Grignard-Verbindung reagiert. Die Ausbeute verringert sich, und aufwändige Reinigungsschritte sind erforderlich.

Mit Durchflussreaktoren Grignard-Reaktionen besser steuern

Pilotanlage zur Grignard-Reagenzsynthese mit bis zu 20 Litern Durchsatz pro Stunde.<br srcset=Foto: Fraunhofer IMM" width="265" height="400">

Pilotanlage zur Grignard-Reagenzsynthese mit bis zu 20 Litern Durchsatz pro Stunde.

Foto: Fraunhofer IMM

Ingenieure am Fraunhofer-Institut für Mikrotechnik und Mikrosysteme IMM in Mainz konnten jetzt zeigen, wie sich solche Schwierigkeiten umgehen lassen. „Wir ersetzen den großen Rührkessel durch einen Durchflussreaktor“, sagt Gabriele Menges-Flanagan vom Fraunhofer IMM. „Auf diese Weise können wir die volle Macht der Reaktion ausnutzen und die Temperatur dennoch wunderbar kontrollieren.“

Menges-Flanagan und ihre Kollegen entwickelten für Synthesen einen speziellen Durchflussreaktor und beschickten diesen mit Magnesiumspänen als Ausgangsstoff für Grignard-Reaktionen. Der Reaktor ist ringförmig gebaut. Im inneren und äußeren Bereich sind Kühlspiralen angeordnet, um Wärme abzuführen. Die Forscher verwenden dafür ein spezielles Öl. Wasser könnte bei einem Bruch der Kühlung explosionsartig mit der metallorganischen Verbindung reagieren. Das organische Halogenid wird von unten nach oben in den Reaktor gepumpt. Es hat aufgrund der großen Oberfläche der Magnesiumspäne mit dem Metall intensiven Kontakt. Innerhalb weniger Minuten kommt es zur Reaktion.

Die ständige Bewegung aller Chemikalien verringert das Risiko von Nebenreaktionen. Durch den Magnesiumüberschuss reagieren organische Halogenide vor allem mit dem Metall und nicht mit anderen Molekülen. Außerdem werden die metallorganischen Verbindungen gleich abtransportiert. Synthesen lassen sich besser steuern, und die Ausbeute verbessert sich.

Grüne Kunststoffe aus Wien: Statt Gift nur heißes Wasser 

Mehr zum Thema

Vom Labor zur Pilotanlage

Nachdem die Forscher am Fraunhofer IMM ihren Mikroreaktor erfolgreich entwickelt und getestet hatten, wagten sie sich an die Hochskalierung von Grignard-Reaktionen. Sie kombinierten vier Einzelmodule zur Pilotanlage, um bis zu 20 Liter gelöster Ausgangsstoffe in einer Stunde umzusetzen. Grignard-Synthesen lasen sich kontinuierlich oder diskontinuierlich betreiben. Mit mehr als vier Einzelmodulen steigt die Kapazität weiter an – bis hin zu industriellen Dimensionen. „In die gesamte Entwicklung vom Labormaßstab bis hin zur Pilotanlage flossen Rückmeldungen aus der Industrie ein“, sagt Menges-Flanagan. Die Pilotierung bei Industriekunden sei in etwa einem Jahr denkbar.

Die Reaktoren eignen sich aber nicht nur für Grignard-Reaktionen, sondern auch für Synthesen mit zinkorganischen Verbindungen. Dann befindet sich metallisches Zink im Inneren. Auch hier arbeiten Chemiker mit organischen Halogeniden. Erste Experimente im Labormaßstab verliefen vielversprechend. Im nächsten Schritt soll die Hochskalierbarkeit untersucht werden.  

Mehr zum Thema Chemie:  

Ein Beitrag von:

  • Michael van den Heuvel

    Michael van den Heuvel hat Chemie studiert. Unter anderem arbeitet er für Medscape, DocCheck, für die Universität München und für pharmazeutische Fachmagazine. Seit 2017 ist er selbstständiger Journalist und Gesellschafter von Content Qualitäten. Seine Themen: Chemie/physikalische Chemie, Energie, Umwelt, KI, Medizin/Medizintechnik.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.