Keramik platzt ab 09.10.2014, 15:10 Uhr

Vulkanasche kann Triebwerke zum Schmelzen bringen

Vulkanasche kann im Luftverkehr große Probleme bereiten. Im Extremfall muss – wie im April 2010 beim Ausbruch des isländischen Vulkans Eyjafallajökull – der Luftraum vollständig gesperrt werden. Doch auch niedrige Aschekonzentrationen können die Triebwerke beschädigen. Wie sehr, das untersucht das Deutsche Zentrum für Luft- und Raumfahrt.

Splitterförmige Aschepartikel des Vulkans Ejafjalla (links): Beim Durchqueren einer etwa 1700 Grad heißen Flamme wandeln sich die Partikel schnell in Schmelztröpfchen (rechts) um. Diese können zum Beispiel an Triebwerken erhebliche Schäden anrichten.

Splitterförmige Aschepartikel des Vulkans Ejafjalla (links): Beim Durchqueren einer etwa 1700 Grad heißen Flamme wandeln sich die Partikel schnell in Schmelztröpfchen (rechts) um. Diese können zum Beispiel an Triebwerken erhebliche Schäden anrichten.

Foto: DLR

Im April 2010 wurde er zur Herausforderung aller Nachrichtensprecher: Der isländische Vulkan mit dem unaussprechlichen Namen Eyjafjallajökull schleuderte riesige Aschemengen in die Atmosphäre. Da es keine Grenzwerte für tolerierbare Aschewerte in der Atmosphäre gab, wurde der Luftraum über Europa gesperrt. Etwa 100.000 Linienflüge fielen aus.

Grenzwerte für Aschepartikel helfen nur bedingt

Der Grenzwert für die für Flugzeuge maximal zulässige Vulkanaschemassenkonzentration wurde dann im Luftraum über Mitteleuropa auf zwei Milligramm Asche pro Kubikmeter Luft festgelegt, über Großbritannien auf vier Milligramm. Allerdings bestehen große Unsicherheiten, wie sich auch diese niedrigen Aschekonzentrationen auf die Triebwerke und Sensoren von Flugzeugen auswirken.

Top Stellenangebote

Zur Jobbörse
Hochschule Esslingen-Firmenlogo
Professor:in für das Lehrgebiet "Konstruktion" Hochschule Esslingen
Göppingen, Esslingen Zum Job 
Safran Data Systems GmbH-Firmenlogo
Testingenieur / Certified Tester (m/w/d) Safran Data Systems GmbH
Bergisch Gladbach Zum Job 
Fraunhofer-Gesellschaft e.V.-Firmenlogo
Sachgebietsleiter*in Technisches Gebäudemanagement - Betrieb, Wartung & Weiterentwicklung Fraunhofer-Gesellschaft e.V.
München Zum Job 
Hochschule Esslingen-Firmenlogo
Professor:in für das Lehrgebiet "Elektrotechnik und Elektrische Energieversorgung" Hochschule Esslingen
Göppingen, Esslingen Zum Job 
Rhein-Sieg Netz GmbH-Firmenlogo
Ingenieur (m/w/d) Netzbetrieb Rhein-Sieg Netz GmbH
Siegburg Zum Job 
Röhm GmbH-Firmenlogo
Ingenieur (m/w/d) Elektrotechnik / Automatisierungstechnik / EMSR Röhm GmbH
Wesseling Zum Job 
BMI Deutschland GmbH-Firmenlogo
Sicherheitsfachkraft / Fachkraft für Arbeitssicherheit (m/w/d) BMI Deutschland GmbH
Dülmen Zum Job 
SWM Services GmbH-Firmenlogo
Inbetriebsetzungsleiter*in für Verfahrenstechnik (m/w/d) SWM Services GmbH
München Zum Job 
Stadtwerke München GmbH-Firmenlogo
Commissioning Manager Control, Field and Automation Engineering (m/w/d) Stadtwerke München GmbH
München Zum Job 
Herrenknecht AG-Firmenlogo
Technischer Redakteur (m/w/d) Herrenknecht AG
Schwanau Zum Job 
Wasserstraßen- und Schifffahrtsverwaltung des Bundes-Firmenlogo
Bauingenieurin /Bauingenieur (m/w/d) Wasserstraßen- und Schifffahrtsverwaltung des Bundes
Brunsbüttel Zum Job 
Wasserstraßen- und Schifffahrtsverwaltung des Bundes-Firmenlogo
Bauingenieurinnen / Bauingenieure (m/w/d) Fachrichtung konstruktiver Ingenieurbau Wasserstraßen- und Schifffahrtsverwaltung des Bundes
Brunsbüttel, Rendsburg Zum Job 
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO-Firmenlogo
Wissenschaftliche*r Referent*in der Institutsleiterin Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO
Stuttgart Zum Job 
Fachhochschule Dortmund-Firmenlogo
Vertretungsprofessur "Produktions- und Qualitätsmanagement"; Fachbereich Maschinenbau Fachhochschule Dortmund
Dortmund Zum Job 
BMI Deutschland GmbH-Firmenlogo
Sicherheitsfachkraft / Fachkraft für Arbeitssicherheit (m/w/d) BMI Deutschland GmbH
Dülmen, Heyrothsberge Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Techniker als Fachexperte für Vertragsmanagement, Ausschreibung, Vergabe & Abrechnung (w/m/d) Die Autobahn GmbH des Bundes
Krailling bei München Zum Job 
KTR Systems GmbH-Firmenlogo
Berechnungsingenieur (m/w/d) KTR Systems GmbH
ONTRAS-Firmenlogo
Spezialist Strategische Technologie (m/w/d) ONTRAS
Leipzig Zum Job 
FH Münster-Firmenlogo
Professur für "Strömungstechnik" im Fachbereich Maschinenbau FH Münster
Münster Zum Job 
Technische Hochschule Rosenheim-Firmenlogo
Professorin / Professor (m/w/d) für Applied Embedded Computing Technische Hochschule Rosenheim
Rosenheim Zum Job 
Von Asche zerstörte Keramikbeschichtung: Ähnlich wie bei einem Topf aus Emaille, bei dem die kompakte Emaille bei einer Deformation des Topfes abplatzt, platzt eine durch geschmolzene Vulkanasche unter Druck gesetzte Wärmedämmschicht von einer Turbinenschaufel ab. 

Von Asche zerstörte Keramikbeschichtung: Ähnlich wie bei einem Topf aus Emaille, bei dem die kompakte Emaille bei einer Deformation des Topfes abplatzt, platzt eine durch geschmolzene Vulkanasche unter Druck gesetzte Wärmedämmschicht von einer Turbinenschaufel ab.

Quelle: DLR

Es ist nur wenig darüber bekannt, welche Auswirkungen Vulkanasche auf die Triebwerke hat oder wie sie die Leistung von Flugzeugen durch verschmutzte Flugdatensensoren sowie Navigations- und Kommunikationseinrichtungen beeinträchtigt. Wissenschaftler des Deutschen Zentrums für Luft- und Raumfahrt (DLR) wollen diese Fragen nun durch Testreihen beantworten.

Erosion und geschmolze Asche bereiten Triebwerken Probleme

„Ein bedeutender Faktor ist die Aschedosis, die im Laufe eines Fluges aufgenommen wird“, erklärt Dr. Hendrik Lau, Leiter des VoicATS-Vehicle genannten Projekts am DLR. „Wir wollen mit unseren Untersuchungen näher eingrenzen, in welchem Bereich eine für Triebwerke schädliche Dosis liegt.“

Vulkanasche schädigt Flugzeugtriebwerke hauptsächlich durch die von scharfkantigen Partikeln verursachte Erosion und durch geschmolzene Asche. Dazu kommt das Problem, dass die Asche Brennstoffdüsen, Kühlluftbohrungen und Turbinenströmungsquerschnitte zusetzt.

Blick in die Versuchsanlage: An der FH Düsseldorf werden Turbinenteile definierten Vulkanasche-Konzentrationen ausgesetzt und anschließend untersucht.

Blick in die Versuchsanlage: An der FH Düsseldorf werden Turbinenteile definierten Vulkanasche-Konzentrationen ausgesetzt und anschließend untersucht.

Quelle: DLR

Auch die für die Geschwindigkeitsmessung genutzten Pilotensonden werden beim Flug durch die Aschewolke kontaminiert. „Der Grad der Beschädigung ist stark abhängig von der jeweiligen Geometrie der Partikel, ihrer Konzentration, den Betriebsbedingungen des Triebwerks und den physikalischen und chemischen Eigenschaften der Asche“, erklärt Lau.

Im Innern der Brennkammer wird es 2000 Grad heiß

Besonders im Innern der Brennkammern der Triebwerke kann es kritisch werden. Denn dort herrschen oft Temperaturen, die weit über dem Schmelzpunkt von Stahl liegen. Die Temperaturen der Flammen erreichen dort locker 2000 Grad Celsius.

Stark durch Aschepartikel beschädigtes Teil einer Turbinenschaufel: Kommen ungeschützte, metallische Oberflächen der Turbinenschaufeln in Kontakt mit dem heißen Gasstrom, können sie lokal aufgeschmolzen werden.

Stark durch Aschepartikel beschädigtes Teil einer Turbinenschaufel: Kommen ungeschützte, metallische Oberflächen der Turbinenschaufeln in Kontakt mit dem heißen Gasstrom, können sie lokal aufgeschmolzen werden.

Quelle: DLR

Brennkammern und Turbinenschaufeln sind deshalb mit einer keramischen Hitzeschutzschicht ausgestattet. Diese Schutzschicht ist durch ihre säulenartige Struktur hochflexibel, kann sich somit dem temperaturbedingten Ausdehnen der darunterliegenden Metallstruktur anpassen.

Asche schmilzt schon bei 900 Grad

Genau da beginnt das Problem: Vulkanasche ist ein Gemisch, besitzt somit keinen definierten Schmelzpunkt, sondern einen Schmelzbereich, der bereits bei 900 Grad Celsius beginnen kann. Die Asche erweicht dann honigartig und kann auf der keramischen Schutzschicht festbacken, wodurch diese ihre Flexibilität verliert.

Verformt sich nun das Metall unter der Schutzschicht, so platzt diese ab. Das an diesen Stellen dann ungeschützte Metall schmilzt. Die Turbinenschaufel verliert ihre optimal aerodynamische Form. Das führt zu einem Leistungsabfall und damit zu einem erhöhten Treibstoffverbrauch. Je nach Schädigungsgrad kann auch die gesamte Turbine ausfallen.

Triebwerk, Triebwerksschaufel und Brennkammer stehen im Fokus

Das Projekt VoicATS-Vehicle, was für Volcanic Ash impact on the Air Transport System steht, wird von den DLR-Instituten für Werkstoffforschung, Flugsystemtechnik und Antriebstechnik bearbeitet.

 

Ein Beitrag von:

  • Detlef Stoller

    Detlef Stoller ist Diplom-Photoingenieur. Er ist Fachjournalist für Umweltfragen und schreibt für verschiedene Printmagazine, Online-Medien und TV-Formate.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.