Mikrowellen machen es möglich 06.01.2023, 08:55 Uhr

Solarstrom aus dem All – Lösung für unsere Energieprobleme?

Klingt spacig, könnte aber bald Realität werden: Solarstrom aus dem All, mit Hilfe von Mikrowellen auf die Erde übertragen. Gerade starten die USA erste Praxistests, Großbritanien möchte bis 2035 Energie in Gigawattbereich aus dem Weltraum zapfen. Und auch die ESA hat erste Konzepte erstellt, wie wir an die Kraft der Sonne kommen. Japan und China unternehmen ebenfalls große Anstrengungen, in den nächsten Jahren Solarkraftwerke im Weltall zu realisieren.

Solarstrom aus dem Weltall

Solarstrom aus dem Weltall könnte unseren Bedarf an erneuerbaren Energien merklich decken.

Foto: Space Energy Initiative

Energie aus Kohle, Öl oder Gas ist schmutzig und nur noch absehbare Zeit verfügbar, Atomstrom zu gefährlich – bleiben Sonnen- und Windenergie als Energiequellen der Zukunft. Doch warum sollen wir die Sonnenergie nicht dort anzapfen, wo sie herkommt – im Weltraum. Dort wäre die Ausbeute ungleich höher. Zahlreiche Länder arbeiten derzeit an dem Traum, Solarstrom im All zu sammeln und diesen dann per Mikrowellen zur Erde zu senden. Damit könnte man elegant das Problem umschiffen, dass die Sonne nur tagsüber scheint, im All ist sie rund um die Uhr verfügbar.

Die USA starten ersten Praxistest

Großbritannien, die EU, USA, Japan, Australien oder Südkorea – alle wollen an das begehrte Sonnenlicht, das im Weltall in unendlichen Mengen vorhanden ist und rund um die Uhr geerntet werden kann. Am weitesten scheint derzeit die USA zu sein. Das California Institut of Technology (CalTech) hat am 3. Januar ein kleines Raumfahrzeug in den Orbit geschickt, um zu erforschen, ob die geplante Art der Stromgewinnung auch in der Praxis machbar ist und reibungslos funktioniert. Zuvor wurden einige Tests auf der Erde erfolgreich abgeschlossen. Unter anderem konnte man Strom über eine Distanz von mehreren Kilometern drahtlos übertragen.

Top Stellenangebote

Zur Jobbörse
Airbus-Firmenlogo
Program Certification Engineering (d/m/f) Airbus
Manching Zum Job 
Max Bögl Bauservice GmbH & Co. KG-Firmenlogo
Gruppenleiter (m/w/d) Konstruktion Stahlbrücken Max Bögl Bauservice GmbH & Co. KG
Sengenthal Zum Job 
Zweckverband Bodensee-Wasserversorgung-Firmenlogo
Projektmanager (m/w/d) Infrastrukturprojekte Zweckverband Bodensee-Wasserversorgung
Stuttgart Zum Job 
Hamburger Hochbahn AG-Firmenlogo
IT-Systemingenieur*in Leitsysteme Busbetrieb Hamburger Hochbahn AG
Hamburg Zum Job 
Allbau Managementgesellschaft mbH-Firmenlogo
Bauprojektleitung (m/w/d) "Technische Projekte" Allbau Managementgesellschaft mbH
THOST Projektmanagement GmbH-Firmenlogo
Ingenieur*in (m/w/d) im Projektmanagement Bereich Mobilität / Verkehr THOST Projektmanagement GmbH
Nürnberg,Hannover Zum Job 
Berliner Wasserbetriebe-Firmenlogo
Projektleiter:in für große Investitionsprojekte (w/m/d) Berliner Wasserbetriebe
Zweckverband Bodensee-Wasserversorgung-Firmenlogo
Planungskoordinator (m/w/d) im Projekt Zukunftsquelle Zweckverband Bodensee-Wasserversorgung
Stuttgart Zum Job 
Airbus-Firmenlogo
FCAS2023 Flight Simulation Architect (d/f/m) Airbus
Manching Zum Job 
Berliner Wasserbetriebe-Firmenlogo
Leitende:r Ingenieur:in der technischen Betriebsführung / Klärwerk Wansdorf (w/m/d) Berliner Wasserbetriebe
Schönwalde-Glien Zum Job 
Airbus-Firmenlogo
FCAS2023 Flight Simulation Integration Engineer (d/f/m) Airbus
Manching Zum Job 
Cycle GmbH-Firmenlogo
Entwicklungsingenieur für Elektronik (m/f/d) Cycle GmbH
Hamburg Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Ingenieur*in (m/w/d) im Projektmanagement Bereich verfahrenstechnischer Anlagenbau (Chemie und Pharma) THOST Projektmanagement GmbH
Nürnberg,Hannover,Berlin,Leipzig,Hamburg Zum Job 
Mitscherlich PartmbB-Firmenlogo
Patentingenieur (w/m/d) Fachrichtung Elektrotechnik, Nachrichtentechnik, Maschinenbau oder vergleichbar Mitscherlich PartmbB
München Zum Job 
VTA Verfahrenstechnik und Automatisierung GmbH-Firmenlogo
Ingenieur:in Elektrotechnik (w/m/d) VTA Verfahrenstechnik und Automatisierung GmbH
Gelsenkirchen,Lingen (Ems) Zum Job 
newboxes GmbH-Firmenlogo
Projektingenieur Produktentwicklung (m/w/d) newboxes GmbH
Deutschlandweit Zum Job 
VTA Verfahrenstechnik und Automatisierung GmbH-Firmenlogo
Ingenieur:in Mess-, Steuer- und Regelungstechnik (MSR) (w/m/d) VTA Verfahrenstechnik und Automatisierung GmbH
Gelsenkirchen Zum Job 
VTA Verfahrenstechnik und Automatisierung GmbH-Firmenlogo
Ingenieur:in Automatisierungstechnik (w/m/d) VTA Verfahrenstechnik und Automatisierung GmbH
Gelsenkirchen Zum Job 
Leviat GmbH-Firmenlogo
Bauingenieur (m/w/d) Leviat GmbH
Langenfeld (NRW) Zum Job 
ILF Beratende Ingenieure GmbH-Firmenlogo
Projekt- und technischer Angebotsingenieur (m/w/d) ILF Beratende Ingenieure GmbH
München, Bremen, Hamburg, Essen, Berlin Zum Job 

Der Technologieträger mit dem Namen Space Solar Demonstrator (SSPD) hob zusammen mit einer Trägerrakete von SpaceX in den Weltraum ab. Im All wird das etwa 50 Kilogramm schwere SSPD mehrere PV-Module arrangieren. Diese werden das Sonnenlicht einfangen, in Strom umwandeln und gebündelt zur Erde schicken – so zumindest der Plan. Für die Test verwendet das CalTech 32 verschiedene Zellentypen, um deren Wirkungsgrad und Haltbarkeit in der Schwerelosigkeit zu überprüfen. Prinzipiell lässt sich die im All gewonnene Energie an jeden beliebigen Ort der Erde transferieren. Die Forschenden des CalTech zeigen sich optimistisch:

„Das System funktioniert hier auf der Erde und hat alle erforderlichen Tests für den Flug ins All bestanden. Es gibt noch immer viele Risiken und Unbekannte, aber wir konnten bereits wertvolle Erkenntnisse gewinnen. Die nun folgenden Experimente werden uns viele weitere Lektionen lehren“, so Ali Hajimiri, Co-Director des Projekts.

Die in den Orbit geschossenen Kacheln sind jeweils zehn mal zehn Zentimeter groß und wiegen weniger als drei Gramm. Im Weltall lassen sie sich zu 60 mal 60 Meter großen Modulen zusammenfügen, wobei das Ausfalten automatisch passiert. Aus den Modulen werden schließlich Solarfelder mit einer Größe von neun Quadratkilometern. Noch unklar ist, wie die riesigen Solarkraftwerke zur Sonne ausgerichtet werden. Werden die Kraftwerke höher ins Orbit geschossen, braucht es weniger Module, in einem niedrigeren Orbit braucht es mehr Module. Im ersten Fall bräuchte es 39 Raketenstarts, im zweiten Fall würden 13 Starts ausreichen. Alles auch eine Frage der Wirtschaftlichkeit, denn jeder Start der Trägerrakete verursacht zusätzlich hohe Kosten.

 Zwei Analysen zeigen das Potenzial für Europa auf

Die Europäische Weltraum Organisation ESA möchte ebenfalls an die Sonnenergie aus dem Weltall kommen und schlägt das seinen Mitgliedsländern mit dem Projekt Solaris vor. Zwei Machbarkeitsstudien sollen dabei helfen, die Mitglieder davon zu überzeugen, in Solarstrom aus dem All zu investieren. Die Ernte des Stroms sei zwar teuer, aber auch durchaus machbar, so ein erstes Studienerkenntnis. 2025 entscheidet die EU, ob solch ein Projekt realisiert werden soll.

Das Beratungsunternehmen Frazer-Nash hat errechnet, dass ab 2050 jährlich 800 Terawattstunden saubere Energie aus dem Weltall gewonnen werden könnte. Das wäre etwa ein Drittel der Stromerzeugung der Europäischen Union im Jahr 2020. Die Analyse skizziert weiterhin, dass weltraumgestützte Solarenergie die fossilen Energieträger und teils auch die Kernenergie aus den europäischen Energiemix verdrängen könnten. Kosten von über 400 Milliarden Euro ständen Einnahmen von rund 600 Milliarden Euro gegenüber.

Die ESA zeigt im folgenden Video, wie solch ein Solarkraftwerk im All aussehen könnte:

Hier wird Ihnen ein externer Inhalt von youtube.com angezeigt.

Mit der Nutzung des Inhalts stimmen Sie der Datenschutzerklärung von youtube.com zu.

Noch sehen die Entscheider dieses Vorhaben skeptisch, geht aus einer Machbarkeitsstudie von Roland Berger hervor. Insbesondere die hohen Kosten im Vorfeld werden kritisch betrachtet, zumal der Aufbau riskant ist und frühestens 2035 beginnen kann. Ein Problem: Um die gewünschte Strommenge auf die Erde zu bekommen, bräuchte es Bodenstationen, die jeweils 70 Quadratkilometer groß sind. Fachleute entgegnen, dass eine Doppelnutzung der Fläche etwa mit Landwirtschaft möglich sei.

Ein weiteres Problem bei der Verwirklichung: Die ESA verfügt derzeit über noch keine vollständig wiederverwendbaren Raketen – anders als die USA, dort gibt es das Starship von SpaceX. Solch eine mehrmals verwendbare Großrakete braucht es jedoch, um die Solaris-Anlagen ins All zu bringen. Diese wären riesig. Die angedachten Solaranlagen sollen ein bis zwei Gigawatt Strom produzieren, was der Leistung eines Kernkraftwerks entspricht. Dazu braucht es Solarpaneele auf einer Fläche von 15 Quadratkilometern, das ist in etwa so groß wie 200 Fußballfelder. Insgesamt wären die Stellaris-Anlagen um ein Vielfaches größer als die Internationale Raumstation ISS.

Auch die Briten wollen Solarstrom aus dem All

Anfang 2022 hat die britische Regierung angekündigt, rund 15 Milliarden Pfund, das entspricht etwa 19 Milliarden Euro, in eine Solarstation im Weltall zu investieren. Insgesamt haben sich über 50 britische Technologieunternehmen der U.K. Space Energie Initiative angeschlossen, darunter Schwergewichte wie der Luft- und Raumfahrtkonzern Airbus, die Universität Cambridge und der Satellitenhersteller SSTL. Die Initiative ist davon überzeugt, dass das Vereinigte Königreich durch das Beamen von Strom bis 2050 keine Treibhausgase mehr produzieren zu müssen.

Wie auch die ESA stützt sich die britische Initiative auf eine umfassende Studie des Beratungsunternehmens Frazer Nash. „Die Studie kam zu dem Schluss, dass dies technisch machbar ist und keine bahnbrechenden physikalischen Gesetze, neuen Materialien oder Bauteiltechnologien erfordert“, so Martin Soltau, Vorsitzender der Initiative. Die Briten wollen in den nächsten 12 Jahren alles Nötige dafür tun, dass bereits 2035 eine Gigawattleistung aus dem Weltraum auf die Erde gelangt.

Dazu wird gerade ein modulares Konzept mit dem Namen CASSIOPeiA erforscht, das steht für Constant Aperture, Solid-State, Integrated, Orbital Phased Array. Entwickelt wurde es vom britischen Ingenieurbüro International Electric Company. Der modulare Charakter des Orbitalkraftwerks ermöglicht es, es nach der Demonstrationsphase zu erweitern. Selbst der Demonstrator wäre jedoch riesig, mit einem Durchmesser von mehreren Kilometern, und würde 300 Starts einer Rakete in der Größe von SpaceX Starship erfordern, um es in die Umlaufbahn zu bringen, sagte Soltau.

Der Satellit würde in einer Höhe von 36.000 Kilometern (22.000 Meilen) über unserem Planeten kreisen und sowohl die Sonne als auch die Erde ständig im Blick haben. „Die Hauptfunktionen des Satelliten sind das Sammeln der Sonnenenergie über große, leichte Spiegel und die Konzentration der Optik auf photovoltaische Zellen, so wie wir es auf der Erde tun“, sagte Soltau. „Sie erzeugen Gleichstrom, der dann über Festkörper-Hochfrequenz-Leistungsverstärker in Mikrowellen umgewandelt und in einem kohärenten Mikrowellenstrahl zur Erde übertragen wird.“

China und das Omega-Projekt

Das chinesische Raumfahrprojekt Omega arbeitet ebenfalls an der Einspeisung von Solarenergie aus dem Weltall. Erste Tests auf dem Boden waren erfolgreich. So wurde zum Beispiel an der Xidian-Universität ein etwa 75 Meter hoher Stahlturm gebaut, der die Energie mittels Hochfrequenz-Mikrowellenstrahlen von den Satelliten abzapfen soll. Allerdings ist die Technik noch nicht völlig ausgereift, es ist beispielsweise noch nicht bekannt, welche Auswirkungen ein solch hochfrequenter Energiestrahl auf die Kommunikation oder den Flugverkehr hat.

Immerhin ist dem chinesischen Forschungsteam gelungen, Strom drahtlos in Form von Mikrowellen etwa 55 Meter weit zu übertragen. Das ist wenig im Vergleich zu den über 30.000 Kilometern, die das System später in der Praxis überwinden muss. Dennoch sind die Chinesen optimistisch, sind sie ihrem Zeitplan doch um drei Jahre voraus. Im Gegensatz zum amerikanischen System soll das aus China drei Vorteile besitzen: Weniger Steuerungsschwierigkeiten, geringerer Wärmeableitungsdruck und ein um 24 Prozent höheres Leistungs-Masse-Verhältnis.

Japan und der Strom aus dem All

Spätestens seit der Nuklearkatastrophe von Fukuoshima 2011, wird Atomstrom in der japanischen Bevölkerung sehr skeptisch betrachtet. Als Alternative wird Sonnenergie aus dem Weltall betrachtet, wobei erste Anstrengungen in dieser Hinsicht bereits vor der Katastrophe unternommen wurde. Im Jahr 2009 verabschiedete das japanische Parlament ein Weißbuch, in dem ein zunächst auf zehn Jahre befristetes Programm zur Entwicklung weltraumgestützter Sonnenenergie festgeschrieben war. In der Ausgabe des Weißbuchs von 2020 ist dieses Vorhaben weiterhin festgeschrieben.

Im Jahr 2014 stellte der Astrophysiker Susuma Sasaki vom Institute of Space and Astronautical Science der japanische Raumfahrtbehörde JAXA vor, wie ein kommerzielles Orbitalkraftwerk mit einem Gigawatt Leistung in den 2030er-Jahren zu realisieren sei. Das Kraftwerk würde über zehntausend Tonnen wiegen und Ausmaße von mehreren Kilometern haben. Die Forschenden schlagen vor, zwei Gittergerüste mit Spiegeln zu verwenden, die das Sonnenlicht zu jeder Tageszeit einfangen. In Sachen Übertragung der Energie mittels Mikrowellen gehören die Japaner zu den Vorreitern. So demonstrierte 2015 Mitsubishi Heavy Industries die Übertragung von zehn Kilowatt Leistung an eine Empfangseinheit, die 500 Meter entfernt war.

Weltraumgestützte Sonnenenergie schon lange ein Traum

Bereits seit den 1970er-Jahren träumen Forschende rund um den Globus davon, Sonnenenergie im Weltraum zu sammeln und auf die Erde zu übertragen. Das liegt insbesondere auch daran, dass mehr als die Hälfte der ankommenden Sonnenstrahlung auf dem Weg durch die Erdatmosphäre durch Effekte wie Reflexion und Absorption verloren geht. Mit weltraumgestützten Solarstromsystemen lässt sich dieses Problem umgehen.

Die Systeme würden das Sonnenlicht außerhalb der Atmosphäre in Mikrowellen umwandeln und zur Erde hin abstrahlen. Dadurch lassen sich die Verluste vermeiden, außerdem würde man die Ausfallzeiten durch den Wechsel von Tag und Nacht auf der Erde vermeiden – verursacht durch die Erdrotation. Das größte Problem liegt im Transport der riesigen Sonnenkraftwerke ins Weltall. Keine der heutigen Trägerraketen lässt einen wirtschaftlichen Betrieb zu. Das Know-How bezüglich der Physik ist vorhanden, die benötigen Materialien gibt es bereits, genauso sind Roboter verfügbar, die die Anlagen im All zusammenbauen könnten.

Die Übertragung der Sonnenenergie über große Distanzen birgt jedoch noch einige technische Hürden, wie das Fachmagazin Chinese Space Science and Technology erläutert. Unklar seien zum Beispiel die Einflüsse von Sonnenwinden oder der Gravition. Kurz gesagt: Wie stark werden diese Faktoren die Effizienz und Genauigkeit der kabellosen Energieübertragung beeinträchtigen?

Ein Beitrag von:

  • Dominik Hochwarth

    Content-Manager beim VDI Verlag. Nach einem Bauingenieurstudium und einer Weiterbildung zum Online-Redakteur, Volontariat und 20 Jahren als Webtexter für eine Internetagentur und einen Onlineshop, landete er bei ingenieur.de. Er schreibt hauptsächlich über Technik und Forschung.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.