Menschliches Erbgut im Hitzetest 28.11.2014, 10:30 Uhr

DNA an Raketenoberfläche überlebt Wiedereintritt in die Erdatmosphäre

Menschliches Erbgut kann selbst extreme Bedingungen eines Weltraumflugs überleben: Die DNA, die Schweizer Forscher an die Außenwand einer Rakete auftrugen, hat sogar Temperaturen von bis zu 1000 Grad beim Wiedereintritt in die Erdatmosphäre fast unbeschadet überstanden. Eine wichtige Erkenntnis für die Suche nach außerirdischem Leben.

Start der Forschungsrakete Texus-49 vom Esrange Space Center in Kiruna, Nordschweden. An der Außenseite haben die Forscher DNA angebracht. 35 Prozent der Moleküle waren nach dem Weltraumflug biologisch voll funktionstüchtig.

Start der Forschungsrakete Texus-49 vom Esrange Space Center in Kiruna, Nordschweden. An der Außenseite haben die Forscher DNA angebracht. 35 Prozent der Moleküle waren nach dem Weltraumflug biologisch voll funktionstüchtig.

Foto: Adrian Mettauer/Universität Zürich

Einmal ins Weltall und zurück an der Außenwand einer Rakete – das würde kein irdisches Lebewesen überstehen. Die Erbsubstanz DNA scheint jedoch wesentlich robusterer Natur zu sein, wie ein Schweizer Forscherteam jetzt überraschend festgestellt hat. Mit Pipetten haben Cora Thiel und Oliver Ullrich von der Universität Zürich an verschiedenen Stellen der Außenseite des Nutzlastbereiches einer Rakete DNA-Moleküle aufgetragen, um zu sehen, was nach dem Flug von den genetischen Informationen übrig bleiben würde.

Erstaunlich viel, wie die Wissenschaftler nach dem Experiment mit dem Namen DNA atmospheric re-entry experiment (DARE) nun zu ihrer eigenen Überraschung feststellten. Die kleinen doppelsträngigen DNA-Moleküle, sogenannte Plasmid-DNA, wurden nach Start, Raumflug, Wiedereintritt in die Erdatmosphäre und Landung an allen aufgetragenen Stellen auf der Texus-49-Rakete wiedergefunden.

Überdies war die geborgene DNA zu einem großen Teil sogar noch in der Lage, genetische Information in Bakterienzellen und Bindegewebszellen zu übertragen. „Diese Studie belegt experimentell, dass die genetische Information der DNA grundsätzlich die extremen Bedingungen des Weltraumes und des Eintritts in die dichte Atmosphäre der Erde überstehen kann“, sagt Studienleiter Oliver Ullrich vom anatomischen Institut der Universität Zürich.

Bis zu 35 Prozent der DNA-Moleküle waren biologisch voll funktionsfähig

Dabei war das Experiment nur aus einer Laune heraus entstanden und ein Nebenprodukt des eigentlichen Forschungsvorhabens der beiden Wissenschaftler. In ihrem Hauptexperiment wollten Thiel und Ullrich die Rolle der Schwerkraft bei der Regulation der Gene in menschlichen Zellen untersuchen, allerdings im Inneren der Rakete.

Die Forscher Cora Thiel und Oliver Ullrich bergen die DNA-Proben von der Außenseite des Nutzlastbereichs der Texus-49-Rakete.

Die Forscher Cora Thiel und Oliver Ullrich bergen die DNA-Proben von der Außenseite des Nutzlastbereichs der Texus-49-Rakete.

Foto: Adrian Mettauer/Universität Zürich

Während der Vorbereitung der Mission stellten sie sich die Frage, ob sich die Außenstruktur der Rakete nicht auch für Stabilitätstests der sogenannten Biosignaturen eignen könnte. „Biosignaturen sind Moleküle, die die Existenz von aktuellen oder früheren Lebensvorgängen belegen können und spielen eine wichtige Rolle bei der Suche nach Leben außerhalb der Erde“, erklärt Thiel. Deshalb starteten die beiden Forscher auf der europäischen Raketenstation Esrange in Kiruna nördlich des Polarkreises eine kleine zweite Mission.

So ging die Plasmid-DNA an der Raketenaußenwand mit auf den 13 Minuten langen Flug und wurde kurzfristig Temperaturen von schätzungsweise bis zu 1000 Grad Celsius ausgesetzt. Auch nach dem Flug in 268 Kilometer Höhe, dem Wiedereintritt in die Erdatmosphäre und der Landung wurden nach Auskunft der Forscher je nach aufgetragener Stelle noch 4,9 bis 53,4 Prozent der DNA wiedergefunden. Bis zu 35 Prozent der DNA-Moleküle seien biologisch voll funktionsfähig gewesen.

Resultate müssen bei der Suche nach außerirdischem Leben berücksichtigt werden

„Wir waren völlig überrascht, soviel intakte und funktionell aktive DNA wiederzufinden“, sagen Thiel und Ullrich. Diese außerordentliche Stabilität von DNA unter Weltraumbedingungen müsse bei der Suche nach Leben außerhalb der Erde in der Interpretation von Resultaten berücksichtigt werden, meinen die Wissenschaftler. „Das Ergebnis zeigt, dass es gar nicht unwahrscheinlich ist, dass trotz aller Vorsichtsmaßnahmen Raumfahrzeuge auch DNA irdischen Ursprunges an ihre Landestelle mitbringen können. Das muss man im Griff haben, wenn man nach Leben außerhalb der Erde sucht.“

Von Gudrun von Schoenebeck Tags:
Das könnte sie auch interessieren

Top Stellenangebote

Hochschule Kaiserslautern-Firmenlogo
Hochschule Kaiserslautern Professur im Bereich Leistungselektronik und Elektronik (W2) Kaiserslautern
Hochschule Ostwestfalen-Lippe-Firmenlogo
Hochschule Ostwestfalen-Lippe W2-Professur Elektromechanik und Mechatronik Lemgo
Technische Universität Dresden-Firmenlogo
Technische Universität Dresden Professur (W3) für Luftfahrzeugtechnik Dresden
Fachhochschule Dortmund-Firmenlogo
Fachhochschule Dortmund Professorin / Professor für das Fach Medizintechnik Dortmund
Generalzolldirektion-Firmenlogo
Generalzolldirektion Diplomingenieur/in / Technische/r Beamtin/-er für das Funk- und Telekommunikationswesen Nürnberg
GULP Solution Services GmbH & Co. KG-Firmenlogo
GULP Solution Services GmbH & Co. KG Entwicklungsingenieur / Konstrukteur Röntgenstrahler (m/w) Hamburg
GULP Solution Services GmbH & Co. KG-Firmenlogo
GULP Solution Services GmbH & Co. KG Quality Assurance Engineer in der Röntgentechnik (m/w) Hamburg
HEMA Maschinen- und Apparateschutz GmbH-Firmenlogo
HEMA Maschinen- und Apparateschutz GmbH Entwicklungskonstrukteur (m/w) Seligenstadt
Deutsches Elektronen-Synchrotron DESY-Firmenlogo
Deutsches Elektronen-Synchrotron DESY Architektin (w/m) für den Forschungscampus DESY Hamburg
Duale Hochschule Gera-Eisenach-Firmenlogo
Duale Hochschule Gera-Eisenach Professur (W2) Engineering mit Schwerpunkt Produktentwicklung Eisenach
Zur Jobbörse