Algorithmen für Schnittfolgen 10.09.2020, 07:02 Uhr

Roboter ermöglichen präzise Ergebnisse in der Schneidetechnik

Koordinierte Bewegungen sind ein komplexes Feld. Das zeigt sich schon darin, dass wir Menschen Jahre benötigen, bis wir die nötige Übung darin haben. Forschern der ETH Zürich ist es nun gelungen, Roboter so zu optimieren, dass sie ein Werkzeug präzise führen können.

zweiarmiger Roboter von ABB

Die Forscher der ETH-Zürich nutzten für ihre Simulation den zweiarmigen Roboter Yumi von ABB.

Foto: ABB, Guenter Bolzern

Simon Düser gehört der Forschungsgruppe von Stelian Coros vom Institut für intelligente interaktive Systeme an der ETH Zürich an. Der Wissenschaftler hat gemeinsam mit Kollegen einen Heiß-Draht-Schneideroboter „RoboCut“ entwickelt. Der Draht lässt sich dabei während der Arbeit flexibel biegen, wodurch es möglich ist, viel komplexere Formen in deutlich weniger Schnitten herzustellen, als dies mit bisherigen Systemen gelang. Herkömmliche Schneideroboter verfügen über einen steifen, elektrisch erhitzbaren Draht. Damit war nur die Bearbeitung von sogenannten Regelflächen möglich, die in jedem Punk eine Gerade enthalten.

Um eine optimale Bewegung zweier Roboterarme vorauszuberechnen, die ein Werkzeug präzise führen, braucht es anspruchsvolle Optimierungsaufgaben, die in einen Algorithmus integriert werden. Genau das stand für Simon Dünser auch im Mittelpunkt bei dem Projekt: „Das Besondere an RoboCut sind die komplexen Optimierungsrechnungen. Diese sind notwendig, um möglichst effiziente Werkzeugwege zu finden und gleichzeitig so exakt wie möglich die gewünschte Form aus dem Styroporblock heraus zu schmelzen.“

Top Stellenangebote

Zur Jobbörse
infraSignal GmbH-Firmenlogo
Projektleiter Steuerkabel (m/w/d) infraSignal GmbH
Die Autobahn GmbH des Bundes-Firmenlogo
Projektingenieur im Brückenbau für Neubau-, Ausbau- und Erhaltungsmaßnahmen (w/m/d) Die Autobahn GmbH des Bundes
Regensburg Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Abteilungsleiter (w/m/d) Konstruktiver Ingenieurbau, Lärmschutzbauwerke Die Autobahn GmbH des Bundes
Nürnberg Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur (w/m/d) für die Projektleitung von Brücken und Ingenieurbauwerke Die Autobahn GmbH des Bundes
Nürnberg Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur als Projektleiter (w/m/d) Planung Die Autobahn GmbH des Bundes
PFINDER KG-Firmenlogo
Produktentwickler (m/w/d) Zerstörungsfreie Werkstoffprüfung PFINDER KG
Böblingen Zum Job 
Hitzler Ingenieur e.K.-Firmenlogo
Projektleiter im Bau-Projektmanagement (m/w/d) Hitzler Ingenieur e.K.
Düsseldorf Zum Job 
Hamamatsu Photonics Deutschland GmbH-Firmenlogo
Master / Diplom in Physik oder Elektrotechnik als Vertriebsingenieur/in für Bereich Analytical (m/w/d) Hamamatsu Photonics Deutschland GmbH
Herrsching am Ammersee Zum Job 
WTM ENGINEERS GMBH-Firmenlogo
BIM-Modeler (m/w/d) für den Bereich Ingenieurwasserbau WTM ENGINEERS GMBH
Hamburg, Kiel, Rostock Zum Job 
Berliner Wasserbetriebe-Firmenlogo
Bauingenieur:in Maßnahmenentwicklung Netze (w/m/d) Berliner Wasserbetriebe
Ministerium für Wirtschaft, Verkehr, Arbeit, Technologie und Tourismus-Firmenlogo
Referentin/Referent (m/w/d) im Referat "Straßenbau" Ministerium für Wirtschaft, Verkehr, Arbeit, Technologie und Tourismus
Hamburger Hochbahn AG-Firmenlogo
Techniker / Ingenieur Elektrotechnik Wartung / Instandhaltung (w/m/d) Hamburger Hochbahn AG
Hamburg Zum Job 
Städtisches Klinikum Dresden-Firmenlogo
Ingenieur (m/w/d) Technische Gebäudeausrüstung (TGA) Städtisches Klinikum Dresden
Dresden Zum Job 
Mercer Stendal GmbH-Firmenlogo
Betriebsingenieur Mechanik (m/w/d) Mercer Stendal GmbH
Arneburg Zum Job 
Rohde & Schwarz Österreich GesmbH-Firmenlogo
Softwareentwickler (m/w/d) Embedded Systems Rohde & Schwarz Österreich GesmbH
Singapur, Stuttgart, Berlin, München Zum Job 
Carl Zeiss Meditec AG-Firmenlogo
Applikationsingenieur (m/w/x) Carl Zeiss Meditec AG
Carl ZEISS MultiSEM-Firmenlogo
Entwicklungsingenieur Elektronik (m/w/x) Carl ZEISS MultiSEM
Oberkochen Zum Job 
Carl Zeiss Meditec AG-Firmenlogo
Process Engineer (m/w/x) Carl Zeiss Meditec AG
Bundesamt für Bauwesen und Raumordnung (BBR)-Firmenlogo
Ingenieurinnen und Ingenieure (w/m/d) in den Fachrichtungen Elektro- bzw. Nachrichtentechnik Bundesamt für Bauwesen und Raumordnung (BBR)
Bundesamt für Bauwesen und Raumordnung (BBR)-Firmenlogo
Ingenieurinnen und Ingenieure (w/m/d) in den Fachrichtungen Versorgungstechnik und Gebäudeautomation Bundesamt für Bauwesen und Raumordnung (BBR)

In zehn Schnitten sitzenden Hasen aus Styroporblock geformt

Der entwickelte RoboCut kann Vertiefungen in einem Kunststoffblock erzeugen. Er ist nicht auf Ebenen, Zylinder, Kegel oder Sattelflächen beschränkt. Das macht ihn flexibel einsetzbar. Nach Angaben der Forscher liegt sein größter Vorteil aber vor allem darin, dass durch das gezielte Biegen des Drahts viel weniger Schnitte notwendig sind im Vergleich zu der Methode mit Regelflächen. Den Forschern ist es beispielsweise gelungen, die Figur eines sitzenden Hasen mit dem biegbaren Draht in nur zehn Schnitten aus einem Styroporblock heraus zu formen. Dabei war der Umriss des Hasen bereits nach zwei Schnitten deutlich erkennbar, das Ergebnis nach zehn Schnitten war vergleichbar mit einem Holzschnitt.

Ziel der Forscher ist es, mit dem RoboCut-Projekt nicht nur grundsätzlich die traditionelle Heißdraht-Methode zu verbessern, sondern auch konkrete Anwendungsziele zu erarbeiten. Vorstellbar ist aus ihrer Sicht ein Einsatz in der Architektur, um aus Styropor individuelle Gussformen für Betonteile zu fertigen. Damit wäre es möglich, Fassaden abwechslungsreicher zu gestalten oder neuartige Bausteinsysteme zu entwickeln.

Mit drei Optimierungen zum Ziel

Für die Testreihe befestigten die Wissenschaftler den Draht an einem zweiarmigen Yumi-Roboter von ABB. So wollten sie sicherstellen, den Draht kontrolliert bewegen zu können. Im Anschluss erfolgte die Berechnung, wie der Draht auf die Bewegungen der Roboterarme reagiert. Dabei ermittelten die Forscher mithilfe von Simulationen die Positionen, die zu instabilen Draht-Stellungen führen oder bei denen ein Drahtbruch droht, und schlossen sie aus. Diese Simulationen dienten als Grundlage für die eigentliche Optimierung. Dafür galt es, drei miteinander zusammenhängende Aspekte gleichzeitig miteinzurechnen. Der erste Aspekt betraf die physikalische Ebene: Die Forscher mussten die kontrollierte Biegung und Bewegung des Drahts vorhersagen, um die gewünschten Schnitte ausführen zu können. Beim zweiten Aspekt stand die Form im Mittelpunkt: Hier ging es darum, eine Schnittfolge zu ermitteln, mit der die Oberfläche in möglichst wenigen Schnitten der weitgehend Zielform ähnelt. Drittens musste auch der Roboter berücksichtigt werden, damit Kollisionen mit Teilen oder Umgebung vermieden werden können und es keine unbeabsichtigten Schnitte gibt.

Zweiarmiger Roboter ferngesteuert
Per Fernsteuerung lässt sich der zweiarmige Roboter präzise bewegen, auch in Verbindung mit sensiblen Materialien.

Foto: ABB

Zweiarmiger Roboter greift Teile
Der zweiarmige Roboter Yumi kann kleine Teile greifen.

Foto: ABB, Karwan Ghafouri

Der zweiarmige Roboter beim Stecken von Teilen
Yumi von ABB kann auch selbstständig Teile auf Platinen stecken.

Foto: ABB

Diese verschiedenen Parameter der komplexen Aufgabenstellung herauszufinden und an der richtigen Stelle in einen globalen Optimierungs-Algorithmus zu integrieren, gelang Simon Dünser mit seinem Projekt RoboCut erstmalig. Sein Weg: eine strukturierte Methode, die er eigens dafür entworfen hat. Sie gehe von einer übergeordneten Zielvorgabe aus: Der Draht solle immer möglichst nahe an der Oberfläche des Zielobjekts schneiden. Jegliche Einschränkungen ordnete er dann Kosten zu und optimierte sie als Summe. Da bei solchen Berechnungen immer wieder lokale Minima hinzukommen, die das Endresultat beeinflussen, hat Dünser sich in mehreren einzelnen Schritten dem gewünschten Ergebnis genähert.

 

Lesen Sie auch:

Hier wird Ihnen ein externer Inhalt von youtube.com angezeigt.

Mit der Nutzung des Inhalts stimmen Sie der Datenschutzerklärung von youtube.com zu.

 

Cleverer Kunststoffschneider kreiert Betonbautechnik von morgen

Der Wissenschaftler ist sich sicher, dass seine Methodik auch für andere Einsatzgebiete geeignet ist, zum Beispiel für die Planung von Werkzeugwegen in anderen Schneide- und Fräsetechniken. Sie passe besonders bei komplexen, rotationssymmetrischen Formen. Dann eröffne seine Methode einen durchaus größeren Spielraum für die Simulationen. Auch im Funkerodieren könne sie einen Fortschritt bringen, weil so komplizierte und dadurch effizientere Schnitte möglich seien als mit den heutigen steifen Drähten. Gemeinsam mit der Forschungsgruppe der EPF Lausanne plant Dünser eine konkrete Anwendung: Sie wollen eine Großversion des Heiß-Draht-Schneideroboters einsetzen, mit der systematische Bausteine für mörtel- und befestigungstechnikfreie Gebäudestrukturen entwickelt werden. Wichtig ist, dass diese Elemente selbst stabil zusammenhalten. Anschließend soll der Roboter auch Styroporformen schneiden, mit denen die verschiedenen Bausteine in Beton gegossen werden.

Mehr zum Thema Roboter:

Ein Beitrag von:

  • Nina Draese

    Nina Draese hat unter anderem für die dpa gearbeitet, die Presseabteilung von BMW, für die Autozeitung und den MAV-Verlag. Sie ist selbstständige Journalistin und gehört zum Team von Content Qualitäten. Ihre Themen: Automobil, Energie, Klima, KI, Technik, Umwelt.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.