Neue Impulse für Elektromobilität 16.11.2018, 06:59 Uhr

Langlebige Metall-Luft-Batterien: Konkurrenz für Lithium-Akkus?

Trotz hoher Energiedichte wurden Aluminium-Luft-Batterien bislang wenig eingesetzt, da sie sich auch ohne Stromentnahme schnell entladen. MIT-Forschern ist es nun gelungen, den Grund hierfür – die Korrosion der Elektroden – stark zu verringern. Ihr System könnte die Reichweite von Elektroautos deutlich erhöhen.

Foto der Aluminium-Luf-Batterie

Die Proof-of-Concept-Batterie der MIT-Forscher blieb 24 Tage lang einsatzfähig. Bei herkömmlichen Aluminium-Luft-Batterien ohne Schutzsystem ist nach 3 Tagen Schluss.

Foto: Massachusetts Institute of Technology (MIT)

Metall-Luft-Batterien gehören zu den leichtesten und kompaktesten Batterietypen auf dem Markt, haben in der Praxis aber immense Nachteile. Wenn sie nicht in Gebrauch sind, bauen sie sich schnell ab. Jetzt haben Forscher am Massachusetts Institute of Technology (MIT) einen Weg gefunden, um Metallelektroden vor dem aggressiven Elektrolyten zu schützen und damit die Lebensdauer zu vergrößern. Nach der Stromentnahme ersetzen sie den korrosiven Elektrolyten durch ein inertes Öl.

Kompakte Bauweise, aber hohe Selbstentladung

Zum Hintergrund: Wiederaufladbare Lithium-Ionen-Akkus verlieren nach einem Monat Lagerung nur 5% ihrer Ladung. Sie sind für viele Anwendungen jedoch zu teuer, zu groß oder zu schwer. Aluminium-Luft-Batterien gehören zu den nicht wiederaufladbaren Primärzellen mit hoher Energiedichte. Das spart Platz und Gewicht. Ihre Anode aus Aluminium wird bei der Stromentnahme oxidiert, und Sauerstoff aus der Luft reduziert. Bei der Redoxreaktion entsteht schwer lösliches Aluminiumhydroxid. Als Elektrolyt kommen starke Basen zum Einsatz. Aufgrund ihrer hohen Selbstentladung von bis zu 80% sind Aluminium-Luft-Batterien derzeit jedoch keine echte Konkurrenz für Lithium-Ionen-Akkus.

Top Stellenangebote

Zur Jobbörse
Bundeswehr-Firmenlogo
Ingenieurin/Ingenieur (m/w/d) für Informationstechnik in der Laufbahn der Offizierinnen und Offiziere Bundeswehr
keine Angabe Zum Job 
Bundeswehr-Firmenlogo
Leitende Ingenieurin/Leitender Ingenieur (m/w/d) im höheren technischen Dienst - Beamtenausbildung Bundeswehr
THOST Projektmanagement GmbH-Firmenlogo
Consultant (m/w/d) im Projektmanagement der Energiewende THOST Projektmanagement GmbH
Nürnberg, Berlin Zum Job 
Bundeswehr-Firmenlogo
Ingenieurin/Ingenieur (m/w/d) im hehobenen technischen Dienst - Beamtenausbildung Bundeswehr
Landeshauptstadt München-Firmenlogo
Rohr-, Kanal- und Industriemeister*in / Bauingenieur*in / Umweltingenieur*in als Betriebshofleitung (w/m/d) Landeshauptstadt München
München Zum Job 
ILF Beratende Ingenieure GmbH-Firmenlogo
Senior Projektingenieur (m/w/d) Maschinenbau / Anlagenbau ILF Beratende Ingenieure GmbH
Bremen,Berlin,Hamburg,München,Essen Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Ingenieur*in (m/w/d) im Projektmanagement THOST Projektmanagement GmbH
Berlin, Hamburg, Hannover, Leipzig, Nürnberg, Kiel, Lübeck, Dresden Zum Job 
Stadtwerke München GmbH-Firmenlogo
Bauingenieur*in/Verkehrsingenieur*in als Projektleitung Neu- und Ausbau Münchner Straßenbahn (m/w/d) Stadtwerke München GmbH
München Zum Job 
ILF Beratende Ingenieure GmbH-Firmenlogo
Senior Projektingenieur (m/w/d) Verfahrenstechnik ILF Beratende Ingenieure GmbH
München Zum Job 
Stadtwerke München GmbH-Firmenlogo
Stadtplaner*in / Verkehrsplaner*in als Projektleitung Straßenbahn (Tram) (m/w/d) Stadtwerke München GmbH
München Zum Job 
Keysight Technologies Inc.-Firmenlogo
Resident Engineer - Automotive & Energy Solutions (m/f/x) Field Service Engineer Keysight Technologies Inc.
Garching Zum Job 
Wieland-Firmenlogo
Berechnungsingenieur (m/w/d) FEM Multiphysics Wieland
Bamberg Zum Job 
Murrelektronik GmbH-Firmenlogo
Softwareentwickler (m/w/d) Murrelektronik GmbH
Oppenweiler, Kirchheim/Holzmaden Zum Job 
Murrelektronik GmbH-Firmenlogo
Embedded Software Architekt (m/w/d) Murrelektronik GmbH
Oppenweiler, Stollberg, Berlin, Kirchheim/Holzmaden, Home-Office Zum Job 
Leuze-Firmenlogo
Industrial Engineer / Anlagenspezialist (m/w/d) Inbetriebnahme und Verlagerungen Leuze
Owen bei Kirchheim/Teck Zum Job 
Murrelektronik GmbH-Firmenlogo
SPS-Programmierer / Application Engineers (m/w/d) Murrelektronik GmbH
Oppenweiler, Kirchheim/Holzmaden Zum Job 
GEYER Electronic GmbH-Firmenlogo
Field Sales Engineer FSE (m/w/d) GEYER Electronic GmbH
Planegg bei München Zum Job 
GEYER Electronic GmbH-Firmenlogo
Field Application Engineer FAE (m/w/d) GEYER Electronic GmbH
Planegg bei München Zum Job 
GEYER Electronic GmbH-Firmenlogo
Messtechniker (m/w/d) GEYER Electronic GmbH
Planegg bei München Zum Job 
AbbVie-Firmenlogo
QA Manager Biologics / Qualified Person (all genders) AbbVie
Ludwigshafen am Rhein Zum Job 

Wenig praktikable Ansätze

Forscher haben schon lange versucht, die Nachteile zu umgehen. Bekannt war bislang, dass der Einsatz anderer Metalle wie Natrium, Lithium, Magnesium, Zink oder Eisen keine Alternative ist, da es zu Leistungseinbußen kommt. Aluminium hat eine deutlich höhere Energiedichte. Auch der Austausch stark korrodierender Basen im Elektrolyten durch weniger aggressive Formulierungen reduzierte die Batterieleistung stark. Das Abpumpen von Flüssigelektrolyten aus größeren Systemen hat sich ebenfalls nicht bewährt. Reste der korrosiven Lauge blieben an den Elektroden haften und zerstören diese auf Dauer.

Ölsperre schützt die Metallelektrode

MIT-Forscher lösten das Problem, indem sie mit einer Ölsperre zwischen der Aluminium-Elektrode und dem Elektrolyten arbeiteten. Im Ruhezustand ist ihre Batterie mit einem inerten Öl gefüllt. Vor Betriebsbeginn pumpen sie die Flüssigkeit ab und ersetzen sie durch den Elektrolyten. Der Energieverlust sinkt Messungen zufolge auf 0,02% pro Monat: eine mehr als eine tausendfache Verbesserung, verglichen mit bisherigen Systemen.

Nach Ende der Stromentnahme gelangt das Öl aus Tanks wieder in das System. Aufgrund seiner hydrophoben Eigenschaften verdrängt es den polaren Elektrolyten von der Elektrodenoberfläche. Die MIT-Experten haben dafür spezielle, widerstandsfähige Membranen entwickelt.

Prototyp erfolgreich getestet

Ihr Prototyp schnitt im Labor gut ab. Die MIT- Forscher entnahmen mehrfach elektrische Energie und versetzten das System danach mit Öl wieder in den Ruhezustand. Im Experiment blieb die neue Aluminium-Luft-Batterie 24 Tage lang einsatzfähig. Bei kommerziellen Produkten war nach 3 Tagen Schluss.

Wesentliche Nachteile zeigten sich nicht. Selbst mit dem Pumpsystem und mit der Ölreserve im Batterie-Pack war das System 80% leichter und halb so groß wie marktübliche Lithium-Ionen-Akkus mit gleicher Leistung.

Größere Reichweiten für Elektroautos

Damit eröffnen sich neue Märkte. Douglas P. Hart vom MIT sieht Einsatzmöglichkeiten im Bereich der Elektromobilität. Aluminium-Luft-Batterien könnten die Reichweite von Elektroautos verlängern, falls ihre Akkus allein nicht ausreichen. Sie werden nur bei Bedarf aktiviert und danach wieder in den Ruhezustand versetzt – auch für längere Zeit. „Ich denke, dass das ein Wendepunkt in Bezug auf die Verwendung dieser Batterien ist“, sagt Hart. Ihr Einsatz könnte bald „über derzeitige Nischenanwendungen hinausgehen“. Sein Team hat das Verfahren zum Patent angemeldet.

Mehr unter:

Ein Beitrag von:

  • Thomas Kresser

    Thomas Kresser ist Biologe und ausgebildeter Journalist. Er arbeitet unter anderem für das VDI Technologiezentrum, das Medizinportal NetDoktor, die Ärzteplattform Esanum und die Bauer Media Group. Thomas Kresser war Chefredakteur/stellv. Chefredakteur von DocCheck, Lifeline, Medscape und Onmeda. Er ist Gründer und Gesellschafter von ContentQualitäten. Seine Schwerpunkte: Biowissenschaften, Medizin, Nachhaltigkeit, Klimaschutz, Digital Health

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.