Luftlöchern auf der Spur 06.08.2013, 14:45 Uhr

Laserbasiertes Frühwarnsystem soll Luftturbulenzen schneller erkennen

Luftturbulenzen sind für Piloten bei klarem Himmel bislang weder sichtbar noch berechenbar. Und aufgrund des Klimawandels könnten sie in Zukunft für den Flugverkehr mehr und mehr zum Problem werden. Jetzt entwickeln Wissenschaftler ein Frühwarnsystem fürs Cockpit, das mit UV-Laserstrahlen die Luftdichte bestimmt.

Ein sogenanntes LIDAR-Instrument außen am Flugzeug misst in Flugrichtung mit kurzwelligen UV-Laserstrahlen die Zusammensetzung der Luft und ihre Dichte. Aus Schwankungen der Dichte wollen DLR-Forscher Luftturbulenzen errechnen. Derzeit unternimmt das DLR Testflüge mit einer modifizierten Cessna Citation.

Ein sogenanntes LIDAR-Instrument außen am Flugzeug misst in Flugrichtung mit kurzwelligen UV-Laserstrahlen die Zusammensetzung der Luft und ihre Dichte. Aus Schwankungen der Dichte wollen DLR-Forscher Luftturbulenzen errechnen. Derzeit unternimmt das DLR Testflüge mit einer modifizierten Cessna Citation.

Foto: DLR

Das Flugzeug gehört zu den sichersten Verkehrsmitteln der Welt. Wenn Verletzungen auftreten, dann meist bedingt durch Turbulenzen, die gemeinhin als Luftlloch wahrgenommen werden. Sie führen zur schnellen Änderung der Flughöhe und erhöhen die Sturzgefahr in der Kabine. Das Problem: Sogenannte Clear Air Turbulences (CAD) treten bei strahlend blauem Himmel auf und sind bislang weder sicht- noch messbar. Aktuellen Erkenntnissen der Atmosphärenforschung zufolge könnten diese Turbulenzen aufgrund des Klimawandels in Zukunft noch verstärkt auftreten.

Laserbasiertes Messgerät des DLR bestimmt Luftdichte

Das von der Europäischen Union geförderte Verbundprojekt DELICAT (Demonstration of LIDAR based Clear Air Turbulence Detection) erforscht derzeit eine Methode, mit der sich Turbulenzen in Zukunft erkennen lassen. Zum Einsatz kommt dabei ein sogenanntes UV-LIDAR-Instrument (Light Detecting and Ranging).

Im Inneren des Testflugzeugs: Das laserbasierte Messgerät des DLR-Instituts für Physik der Atmosphäre in Oberpfaffenhofen misst die Dichte der Luft, um Turbulenzen aus größerer Entfernung zu erkennen.

Im Inneren des Testflugzeugs: Das laserbasierte Messgerät des DLR-Instituts für Physik der Atmosphäre in Oberpfaffenhofen misst die Dichte der Luft, um Turbulenzen aus größerer Entfernung zu erkennen.

Quelle: DLR

Top Stellenangebote

Zur Jobbörse
Airbus-Firmenlogo
Program Certification Engineering (d/m/f) Airbus
Manching Zum Job 
MTU Aero Engines AG-Firmenlogo
Verfahrensspezialist Additive Fertigung (all genders) MTU Aero Engines AG
München Zum Job 
MTU Aero Engines AG-Firmenlogo
Projektingenieur / Projektmanager PW1100 (all genders) MTU Aero Engines AG
München Zum Job 
MTU Aero Engines AG-Firmenlogo
Manager Qualitätsmethoden & Risikomanagement (all genders) MTU Aero Engines AG
München Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Consultant Digital Transformation (m/w/d) THOST Projektmanagement GmbH
München, Stuttgart, Freiburg, Mannheim, Memmingen Zum Job 
WACKER-Firmenlogo
Procurement Manager (m/w/d) CSA / Bauleistungen WACKER
Burghausen Zum Job 
SWU Stadtwerke Ulm/Neu-Ulm GmbH-Firmenlogo
Vertriebsmitarbeiter (m/w/d) Fernwärme SWU Stadtwerke Ulm/Neu-Ulm GmbH
Ulm, Neu-Ulm Zum Job 
Junghans microtec GmbH-Firmenlogo
Elektronikingenieur (m/w/d) Junghans microtec GmbH
Dunningen-Seedorf (bei Villingen-Schwenningen) Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Architekt*in / Ingenieur*in (m/w/d) Bereich Bau / Immobilien THOST Projektmanagement GmbH
Karlsruhe Zum Job 
MED-EL Medical Electronics-Firmenlogo
R&D Engineer, Surgical Tools (m/f/d) MED-EL Medical Electronics
Innsbruck (Österreich) Zum Job 
SWU Stadtwerke Ulm/Neu-Ulm GmbH-Firmenlogo
Koordinator (m/w/d) Lichtsignalanlagen SWU Stadtwerke Ulm/Neu-Ulm GmbH
Ulm, Neu-Ulm Zum Job 
Netz Leipzig GmbH-Firmenlogo
Ingenieur als Teamleiter Planung / Bau - Energieanlagen & Energienetze (m/w/d) Netz Leipzig GmbH
Leipzig Zum Job 
Cargill-Firmenlogo
Project Engineer (m/f/d) Cargill
ALTEN Technology GmbH-Firmenlogo
Projektmanager / Projektingenieur (m/w/d) Automotive ALTEN Technology GmbH
Wolfsburg Zum Job 
AVONEL-Firmenlogo
Softwaretester Gesamtsysteme (m/w/d/i) AVONEL
München Zum Job 
AVONEL-Firmenlogo
Entwicklungsingenieur für hochautomatisiertes Fahren (Chassis & Bremse) (m/w/d/i) AVONEL
München/Heidenheim Zum Job 
ALTEN Technology GmbH-Firmenlogo
Projektingenieur (m/w/d) Qualitätssicherung - Automotive ALTEN Technology GmbH
Wolfsburg Zum Job 
AVONEL-Firmenlogo
Operativer Einkäufer (m/w/d/i) AVONEL
München Zum Job 
WEIG Group-Firmenlogo
Projektingenieur Digitalisierung (m/w/d) WEIG Group
ALTEN Technology GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Elektrotechnik - Automotive ALTEN Technology GmbH
Wolfsburg Zum Job 

Dieses laserbasierte Messgerät, eigens entwickelt vom DLR-Institut für Physik der Atmosphäre in Oberpfaffenhofen, wird am Flugzeug angebracht und sendet kurzwellige UV-Laserstrahlen in Flugrichtung. Es bestimmt anschließend die Dichte der Luft anhand der Rückstreuwerte von Luftmolekülen, Sauerstoff und Stickstoff.

Aktuell finden Testflüge mit einer Cessna statt

Derzeit finden erste Testflüge statt. Im Einsatz ist das Forschungsflugzeug PH-LAB des niederländischen Partners National Aerospace Laboratory, eine modifizierte Cessna Citation. Die Forscher erhoffen sich von den Messungen neue Erkenntnisse zu komplexen atmosphärischen Prozessen, mit denen sie schließlich ein Erkennungssystem entwickeln wollen. Das soll Piloten die Möglichkeit geben, Turbulenzen so früh zu erkennen, dass sie das Gebiet umfliegen oder wenigstens die Passagiere warnen können. 

Turbulenzen haben viel damit zu tun, dass moderne Passagierflugzeuge in den Höhen unterwegs sind, in denen auch Starkwinde vorkommen, die sogenannten Jetstreams. Sie kommen rund um den Globus vor in Höhen zwischen 8000 und 12 000 Meter.

Entlang des Jetstreams bewegen sich die Luftschichten mit unterschiedlichen Geschwindigkeiten horizontal gegeneinander. Dadurch entstehen sogenannte Windscherungen. Diese bilden Wellen aus, die schließlich auch brechen können – vergleichbar einer Wasserwelle. Dieser Bruch verursacht die Turbulenz. Sobald ein Flugzeug auf diese Turbulenz trifft, verändert sich der Anstellwinkel der Luftströmung an den Tragflächen und es beginnt, im Auftrieb zu schwanken.

Ein Beitrag von:

  • Patrick Schroeder

    Patrick Schroeder arbeitet als freiberuflicher Journalist für Zeitschriften und Onlinemagazine wie die VDI Nachrichten und Ingenieur.de.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.