Auf dem Weg zum Supercomputer 10.01.2023, 07:00 Uhr

Quantencomputer: Forschende lösen grundlegende Probleme

US-Ingenieurinnen und Ingenieuren ist ein Durchbruch bei Quantencomputern gelungen. Sie zeigen, wie sich einzelne Photonen gezielt in bestimmte Richtungen steuern lassen: eine Voraussetzung, um größere Netzwerke aufzubauen.

Quantencomputer

Quantencomputer der Zukunft: Modell mit Qubits, sprich Systemen, die Photonen gerichtet aussenden.

Foto: Krantz NanoArt/MIT

Quantencomputer versprechen, Aufgaben zu lösen, an denen die leistungsstärksten Supercomputer der Welt scheitern. Sie simulieren Materialeigenschaften, Effekte der Finanzwirtschaft, aber auch Eigenschaften von Arzneistoffen in der Medizin.

Um effizient zu arbeiten, ist eine robuste, skalierbare Hardware erforderlich. Bislang war die Herausforderung für große Quantencomputer, einen effektiven Weg zu finden, um einzelne, über den Chip verteilte Knoten mit Quanteninformationen zu verbinden. Da sich Quantencomputer grundlegend von klassischen Computern unterscheiden, lassen sich herkömmliche Techniken zur Übermittlung elektronischer Informationen nicht direkt übertragen. Unabhängig davon, ob eine klassische Verbindung oder eine Quantenverbindung verwendet wird, müssen die übertragenen Informationen fehlerfrei gesendet und empfangen werden.

Jetzt sind Forschende am Massachusetts Institute of Technology (MIT) in Cambridge einen großen Schritt vorangekommen. Sie haben eine Architektur für Quantencomputer entwickelt mit dem Ziel, eine erweiterbare, zuverlässige Kommunikation zwischen supraleitenden Quantenprozessoren zu erreichen. Grundlage ist die Aussendung einzelner Photonen als Informationsträger in eine vom Benutzer vorgegebene Richtung. Ihre Methode gewährleistet, dass die Quanteninformation in mehr als 96% aller Fälle in die richtige Richtung fließt.

So wird ein Quantencomputer stabiler und effizienter

Stellenangebote im Bereich IT/TK-Projektmanagement

IT/TK-Projektmanagement Jobs
Frankfurt University of Applied Sciences-Firmenlogo
Professur "Vernetzte Eingebettete Systeme" (w/m/d) Frankfurt University of Applied Sciences
Frankfurt am Main Zum Job 
Energie und Wasser Potsdam GmbH-Firmenlogo
Geoinformatiker (m/w/d) / Vermessungsingenieur (m/w/d) als Projektleiter (m/w/d) GIS - Fachanwendungen Energie und Wasser Potsdam GmbH
Potsdam Zum Job 
Frankfurt University of Applied Sciences-Firmenlogo
Professur "Software Engineering - Moderne Verfahren" (w/m/d) Frankfurt University of Applied Sciences
Frankfurt am Main Zum Job 
Niedersächsische Landesbehörde für Straßenbau und Verkehr-Firmenlogo
BIM-Manager (m/w/d) für Bauprojekte Niedersächsische Landesbehörde für Straßenbau und Verkehr
Hannover Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Fachingenieur (w/m/d) BIM Die Autobahn GmbH des Bundes
NORDEX GROUP-Firmenlogo
SCADA Projektingenieur (m/w/d) NORDEX GROUP
Hamburg, Rostock Zum Job 
Westfälische Hochschule-Firmenlogo
Professur Künstliche Intelligenz und Industrielle Automation (W2) Westfälische Hochschule
Gelsenkirchen Zum Job 
FlowChief GmbH-Firmenlogo
Techniker:in Automatisierung (SCADA) (m/w/d) FlowChief GmbH
Wendelstein Zum Job 
Wirtgen GmbH-Firmenlogo
Software-Ingenieur (m/w/d) Elektrotechnik im Bereich Steuerungssoftware für mobile Arbeitsmaschinen Wirtgen GmbH
Windhagen Zum Job 
Niedersachsen.next GmbH-Firmenlogo
Themenmanager Mobilität und Digitalisierung | Mobilitätskonzepte (m/w/d) Niedersachsen.next GmbH
Hannover Zum Job 
Hochschule für Technik und Wirtschaft Berlin-Firmenlogo
Professor (W2) | Permanent Computer Architecture and Computer Systems Hochschule für Technik und Wirtschaft Berlin
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur Vermessung (m/w/d) Die Autobahn GmbH des Bundes
Montabaur Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Lösungsentwickler (w/m/d) im Digitallabor Geoinformatik Die Autobahn GmbH des Bundes
Hochschule Osnabrück-Firmenlogo
Tandem-Professur Robotik, Data Science and AI, Digitalisierte Wertschöpfungsprozesse Hochschule Osnabrück
Osnabrück, Lingen Zum Job 
Tagueri AG-Firmenlogo
Consultant OTA - Connected Cars (m/w/d)* Tagueri AG
Stuttgart Zum Job 
Hochschule für Technik und Wirtschaft Berlin-Firmenlogo
Professur (W2) | auf Lebenszeit Fachgebiet Rechnerarchitekturen und Rechnersysteme Hochschule für Technik und Wirtschaft Berlin
B. Braun Melsungen AG-Firmenlogo
Global Lead (w/m/d) Operational Technology (OT) B. Braun Melsungen AG
Melsungen Zum Job 
WIRTGEN GmbH-Firmenlogo
Duales Studium Software Engineering - Bachelor of Engineering (m/w/d) WIRTGEN GmbH
Windhagen, Remagen Zum Job 
VIAVI-Firmenlogo
Senior / Software Engineer (C++, Python & Cloud) (m/w/d) VIAVI
Eningen Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Teamleitung (w/m/d) BIM-Management Die Autobahn GmbH des Bundes

Daran sind Quantencomputer bislang gescheitert

Doch wo genau liegt das Problem? In einem klassischen Computer erfüllen Komponenten unterschiedliche Funktionen. Sie führen Berechnungen durch oder speichern Informationen. Daten werden als Bits mit einer Null oder Eins als Wert abgelegt. In leitenden Materialien bewegen sich Elektronen zum Informationsaustausch.

Quanteninformationen sind jedoch komplexer; sie können nicht mit solchen Strukturen übertragen werden. Netzwerke verbinden einzelne Knoten mit Hilfe von Photonen, also Lichtteilchen, die durch spezielle Verbindungsleitungen, den Wellenleitern, übertragen werden. Ein Wellenleiter kann entweder unidirektional sein und ein Photon nur nach links oder rechts bewegen. Oder er ist bidirektional, sprich unterstützt den Transport in beide Richtungen.

Die meisten experimentellen Quantencomputer verwenden unidirektionale Wellenleiter. Sie sind einfacher zu implementieren, da die Richtung, in der sich die Photonen bewegen, leicht festgelegt werden kann. Da aber jeder Wellenleiter Photonen nur in eine Richtung bewegt, werden mit zunehmender Größe des Quantennetzwerks mehr Wellenleiter benötigt, was die Skalierung bei Netzwerken erschwert. Darüber hinaus sind bei unidirektionalen Wellenleitern in der Regel zusätzliche Komponenten erforderlich, um die Richtungsabhängigkeit zu gewährleisten, was zu Kommunikationsfehlern führt.

Jetzt stellen MIT-Ingenieurinnen und -Ingenieure einen Wellenleiter vor, der bidirektional ist – mit der Option, die Richtung nach Belieben zu wählen. Mehrere Verarbeitungsmodule können entlang dieses Wellenleiters aufgereiht werden. Ein bemerkenswertes Merkmal dieses Konzepts ist, dass dasselbe Modul sowohl als Sender als auch als Empfänger verwendet werden kann. Photonen können von zwei beliebigen Modulen entlang eines gemeinsamen Wellenleiters gesendet und eingefangen werden.

Forschende nutzen Quanteneigenschaften aus

Um dies zu demonstrieren, bauten Forschende ein Modul aus vier sogenannten Qubits. Diese speziellen Bausteine von Quantencomputern werden zur Speicherung und Verarbeitung von Quanteninformationen verwendet. Qubits können aber auch genutzt werden, um Photonen auszusenden.

Der Anschluss eines Qubits an einen Wellenleiter allein führt noch nicht zur Richtungsabhängigkeit. Ein Qubit sendet zwar ein Photon aus. Aber ob es nach links oder nach rechts wandert, das geschieht rein zufällig. Um dieses Problem zu umgehen, verwenden die Wissenschaftlerinnen und Wissenschaftler zwei Qubits und steuern die Emission mit quantenmechanischen Effekten.

Auch zum Empfangen eignet sich die Technik. „Jedes Photon hat eine bestimmte Frequenz, eine bestimmte Energie, und man kann ein Modul darauf vorbereiten, es zu empfangen, indem man es auf dieselbe Frequenz abstimmt“, erklärt Aziza Almanakly vom MIT. „Wenn sie nicht dieselbe Frequenz haben, wird das Photon einfach vorbeifliegen.“ Das sei vergleichbar mit dem Einstellen eines Radios auf einen bestimmten Sender. „Wenn wir die richtige Radiofrequenz wählen, können wir die Musik empfangen, die auf dieser Frequenz gesendet wird“, so Almanakly weiter. Im Experiment erzielten die Ingenieurinnen und Ingenieure mit dem Aufbau eine hohe Genauigkeit. Wenn sie ein Photon nach rechts aussenden wollten, ging es in 96% der Fälle tatsächlich rechts.

Leistungsfähige Quantenprozessoren für Quantencomputer konstruieren

Nachdem sie mit dieser Technik effektiv Photonen in eine bestimmte Richtung aussenden konnten, wollen die Forschenden nun mehrere Module miteinander verbinden und das Verfahren zum Aussenden und Absorbieren von Photonen einsetzen. Dies wäre ein wichtiger Schritt auf dem Weg zur Entwicklung einer modularen Architektur, die viele kleinere Prozessoren zu einem größeren und leistungsfähigeren Quantenprozessor vereint: eine Grundlage für Quantencomputer.

Mehr zum Thema Quantencomputer:

Ein Beitrag von:

  • Michael van den Heuvel

    Michael van den Heuvel hat Chemie studiert. Unter anderem arbeitet er für Medscape, DocCheck, für die Universität München und für pharmazeutische Fachmagazine. Seit 2017 ist er selbstständiger Journalist und Gesellschafter von Content Qualitäten. Seine Themen: Chemie/physikalische Chemie, Energie, Umwelt, KI, Medizin/Medizintechnik.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.