Forschung für die Umwelt 02.10.2017, 13:27 Uhr

Turbine vereint Küstenschutz mit Energiegewinnung

Die Kraft, mit der Wellen und Wind auf die Küste schlagen, ist häufig abträglich. Japanische Forscher zeigen nun, wie man die erosive Kraft nutzen könnte, um Energie zu gewinnen und die Küstenlinie zu schonen.

Foto: OIST

In Zeiten des Klimawandels und ansteigender Wasserspiegel kommt dem Küstenschutz weltweit eine immer größere Bedeutung zu. Neben der Befestigung der Küsten mit Buhnen, Tetrapoden und Aufschüttungen, wie sie vielfach an der deutschen Nordseeküste zum Einsatz kommen, sind innovative Techniken in der Entwicklung. Da die Kraft von Wind und Wellen nicht nur eine zerstörerische Kraft hat, sondern auch Turbinen antreiben kann, gab es schon längere Zeit Überlegungen, diese Kraft zum Schutz der Küsten zu nutzen. Japan setzt diese Idee jetzt um.

Turbinen im Küstenschutz – nicht nur zur Energiegewinnung

Die Wellen der Ozeane produzieren eine unendliche Menge von Energie. Weltweit wird bereits seit einiger Zeit versucht, diese Energie nutzbar zu machen. Entsprechende Ansätze wurden unter anderem vor den Küsten Hawaiis, auf Gibraltar und in Kalifornien entwickelt. Australien hat sich bereits an einer Technik versucht, die in einer Art künstlichem Luftloch Energie aus dem Zusammenspiel von Luft und Wellen nutzbar machen soll.

Die Energieproduktion ist jedoch nur ein Aspekt, der mit Wellenkraft einhergeht. Ihr konstantes Aufschlagen auf die Küste sorgt für erosive Prozesse, die sich bei Sturmfluten und steigenden Meeresspiegeln noch erheblich verstärken. Von der deutschen Nordseeküste kennt man sternförmige Strukturen aus Beton, die sogenannten Tetrapoden als Helfer im Küstenschutz. Japan will nun einen neuen Weg bei der Sicherung der Küsten gehen, indem die Tetrapoden-Technik mit dem Prinzip der Energiegewinnung durch Turbinen kombiniert wird.

Turbinen und Tetrapoden arbeiten gemeinsam bei der Küstensicherung

Schon vor fast 20 Jahren gab es in Schottland Ideen, Turbinen zum Schutz der Küste einzusetzen. In Japan hat man diese Ideen in den letzten Jahren weiterentwickelt. Das japanische Okinawa Institute of Science and Technology (OIST) hat Modelle vorgestellt, in denen Turbinen neben Tetrapoden platziert werden und dabei helfen, Energie einzufangen.

Stellenangebote im Bereich Energie & Umwelt

Energie & Umwelt Jobs
Stadt Glinde-Firmenlogo
Tiefbauingenieur:in (m/w/d) für das Sachgebiet Tiefbau, Baubetriebshof und öffentliches Grün Stadt Glinde
AGR Betriebsführung GmbH-Firmenlogo
Betriebsingenieur (m/w/d) Abfallmanagement / Entsorgung / Chemie AGR Betriebsführung GmbH
TA Europe Business Consulting GmbH-Firmenlogo
Real Estate Consultant ESG & Sustainability (m/w/d) TA Europe Business Consulting GmbH
verschiedene Standorte Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur (w/m/d) mit Schwerpunkt Abfall und Bodenmanagement Die Autobahn GmbH des Bundes
Freiburg im Breisgau Zum Job 
Indorama Ventures Polymers Germany GmbH-Firmenlogo
Projektingenieur Verfahrenstechnik (m/w/d) Chemische Produktion Indorama Ventures Polymers Germany GmbH
Gersthofen Zum Job 
Jungheinrich AG-Firmenlogo
EHS-Projektingenieur (m/w/d) mit Schwerpunkt Energieeffizienz Jungheinrich AG
deutschlandweit Zum Job 
Technische Hochschule Aschaffenburg-Firmenlogo
W2-Forschungsprofessur für nachhaltige Energiesysteme und Leitung des Technologietransferzentrums Nachhaltige Energien (m/w/d) Technische Hochschule Aschaffenburg
Alzenau Zum Job 
Thüringer Energie- und GreenTech-Agentur GmbH (ThEGA)-Firmenlogo
(Junior-) Projektleiter:in Energieeffizienzgesetz und -Netzwerke Thüringer Energie- und GreenTech-Agentur GmbH (ThEGA)
Veltum GmbH-Firmenlogo
Planungsingenieur:in für Versorgungstechnik Heizung, Lüftung, Sanitär Veltum GmbH
Waldeck Zum Job 
Energie und Wasser Potsdam GmbH-Firmenlogo
Senior-Mehrsparten-Projektbearbeiter (m/w/d) Realisierung Energie und Wasser Potsdam GmbH
Potsdam Zum Job 
Excellence AG-Firmenlogo
Projektleiter Anlagenbau (m/w/d) Excellence AG
Energieversorgung Halle Netz GmbH-Firmenlogo
Fachingenieur Elektrotechnik (m/w/d) Energieversorgung Halle Netz GmbH
Halle (Saale) Zum Job 
Bundeswehr-Firmenlogo
Ingenieurin / Ingenieur mit Master - Beamten - Ausbildung (m/w/d) Bundeswehr
deutschlandweit Zum Job 
Bundeswehr-Firmenlogo
Gehobener Feuerwehrdienst mit Bachelor (m/w/d) Beamten-Ausbildung Bundeswehr
deutschlandweit Zum Job 
Dr.-Ing. Veenker Ingenieurgesellschaft mbH-Firmenlogo
Projektassistentin/Projektassistent (all genders welcome) Dr.-Ing. Veenker Ingenieurgesellschaft mbH
Hannover Zum Job 
VH-7 Medienküche GmbH-Firmenlogo
Bauingenieur / Umweltingenieur oder Ingenieur Umweltschutztechnik (M/w/d) VH-7 Medienküche GmbH
Stuttgart Zum Job 
BG ETEM-Firmenlogo
Aufsichtsperson gemäß des § 18 SGB VII (m/w/d) im Bereich München-Ost, Landshut, Rosenheim, in der Fachkompetenz Druck und Papierverarbeitung BG ETEM
Rosenheim, Augsburg, Köln, Landshut Zum Job 
Propan Rheingas GmbH & Co. KG-Firmenlogo
Energieberater (m(w/d) Propan Rheingas GmbH & Co. KG
Iqony GmbH-Firmenlogo
Projektingenieur (m/w/d) Qualitätssicherung Iqony GmbH
empact GmbH-Firmenlogo
Projektmanager (m/w/d) - Konzeptionierung & Dekarbonisierung empact GmbH
Berlin, Köln, München, Frankfurt Zum Job 

Dabei soll das neue System nicht nur Energie „ernten“, sondern die Energie auch neu verteilen. Die Stärke, mit der Wellen auf die japanische Küste auftreffen, sollen gemeinsam mit den Tetrapoden abgeschwächt werden. Dafür werden die Turbinen direkt in die Front der eintreffenden Wassermassen gestellt –noch vor den Tetrapoden und anderen natürlichen Strukturen wie Korallenriffen. Damit können die Turbinen Vorteile aus den sich schnell bewegenden Jetströmungen ziehen, die dort entstehen, wo Wellen brechen. 

Technischer Aufbau der Turbinen

Bei der Entwicklung der Turbine haben sich die Wissenschaftler u.a. von Delfinen inspirieren lassen.

Bei der Entwicklung der Turbine haben sich die Wissenschaftler u.a. von Delfinen inspirieren lassen.

Quelle: OIST

Die Turbinen sollen mit verankernden Kabeln am Meeresgrund befestigt werden. Die japanischen Wissenschaftler um Tsumoru Shintake planen, dass sie gerade so weit über dem Meeresspiegel herausragen, dass die Wellen über ihnen zusammenschlagen können. Jede einzelne Turbine soll dem Modell nach mit fünf Rotorblättern ausgestattet sein, die jeweils einen Durchmesser von 70 cm haben. Die Rotorblätter werden an einen permanenten elektromagnetischen Generator angeschlossen, der von Keramik umschlossen wird, um das aggressive Salzwasser außen vor zu halten. Die erzeugte elektrische Energie soll durch ein Kabel in den Stützstamm der Turbine geleitet und von dort aus zur Küste in das Netz geschickt werden. 

Sicherheit von Seevögeln und anderen Tieren soll gewährleistet sein

Vielfach wird angenommen, dass von sich drehenden Rotorblättern in Turbinen Gefahren für Seevögel und andere Tiere des Biotops Ozean ausgehen. Bekannt sind solche Diskussionen auch von Windrädern an deutschen Küsten. Die Wissenschaftler, die das japanische Turbinensystem für den Küstenschutz entwickelt haben, beruhigen potenzielle Kritiker.

Auch wenn es auf den ersten Blick so wirkt, als wenn rotierende Rotorblätter nicht besonders sicher seien, habe man entsprechende Vorsichtsmaßnahmen getroffen, um den Lebensraum Küste und auch die Turbinen selbst vor Schaden zu schützen. So sei die Geschwindigkeit der Rotorblätter exakt kalkuliert und daraufhin abgestimmt worden, dass Tiere, die an sie herangespült werden, leicht entfliehen können. Auch habe man sich bei dem Schutz der Turbinen während schweren Wellengangs und während Stürmen an der Finne von Delphinen orientiert und die Rotorblätter so flexibel gestaltet, dass sie ausreichend Druck abgeben können. Die gesamte Struktur ist so geplant, dass sie sich unter Druck beugt wie eine Blume im Wind.

Eine Leistung von 10 GW ist für Japans Küsten realistisch

Die Wissenschaftler sprechen den Turbinen eine Lebensdauer von etwa zehn Jahren zu. Wie viel Energie die entsprechenden Strukturen produzieren könnten, dazu gibt es bisher allerdings nur Schätzungen. Diese basieren auf einer Situation, in der die kleinen Turbinen in großem Umfang an der Küste eingesetzt werden. Da gut 30% der gesamten Küste im Kernbereich von Japan mit Tetrapoden und Wellenbrechern ausgestattet ist, würde man bereits 10 Gigawatt produzieren können, wenn man nur ein Prozent der Küstenlinie mit den zusätzlichen Turbinen bestücken könnte, so die Wissenschaftler.

Im Vergleich: Ein Kernkraftwerk bringt es im Schnitt auf eine Leistung von einem Gigawatt.

Umsetzung wird begonnen

In einem ersten Schritt zur praktischen Umsetzung der Planung sollen in einem bestimmten Küstenabschnitt Japans Modellturbinen installiert werden. Mit einem Durchmesser von 35 Zentimeter sind die Rotorblätter der Testturbinen allerdings nur halb so groß wie die am Ende angedachten Turbinen der Serienproduktion. Die allerdings wird noch auf sich warten lassen. Die japanischen Ingenieure sind zuversichtlich, dass in etwa 100 Jahren ein Großteil der japanischen Küsten mit der entsprechenden Technik ausgestattet sein werden. 

Ein Beitrag von:

  • ingenieur.de

    Technik, Karriere, News, das sind die drei Dinge, die Ingenieure brauchen.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.