Machine Learning 09.03.2020, 07:00 Uhr

Roboter imitiert bei komplexen Aufgaben das menschliche Verhalten

Mehrdeutige Situationen wie das Decken eines Tisches stellen Roboter vor Herausforderungen. Ein Algorithmus hilft ihnen bei mehrdeutigen Aufgaben, berichten MIT-Forscher. Er orientiert sich an der Arbeitsweise von Menschen.

Durch die Beobachtung von Menschen lernen Roboter, komplexe Aufgaben wie das Decken eines Tisches auszuführen.
Foto: Christine Daniloff, MIT

Durch die Beobachtung von Menschen lernen Roboter, komplexe Aufgaben wie das Decken eines Tisches auszuführen.

Foto: Christine Daniloff, MIT

Bislang entwickeln Ingenieure nicht nur Roboter, sondern implementieren Bewegungsabläufe in deren Software. „Unsere Vision ist es, die Programmierung in die Hände von Fachgebietsexperten zu legen, die Roboter auf intuitive Weise programmieren können, anstatt einem Ingenieur Befehle zu beschreiben, die er ihrem Code hinzufügen soll“, sagt Ankit Shah vom Massachusetts Institute (MIT) in Cambridge. „Fabrikarbeiter können einem Roboter beibringen, komplexe Montageaufgaben auszuführen. Und Haushaltsroboter können von Menschen lernen, wie man Schränke stapelt, die Spülmaschine belädt oder den Tisch deckt.“  

Diesem Ziel sind MIT-Forscher jetzt ein Stück nähergekommen. Sie haben ein spezielles System entwickelt, „Planning with Uncertain Specifications“ (PUnS) genannt. Es soll Robotern die menschliche Fähigkeit näherbringen, viele, eventuell mehrdeutige Möglichkeiten der Planung abzuwägen, um ein Ziel zu erreichen. PUnS arbeitet mit Wahrscheinlichkeiten, um eine Aktion aus mehreren Optionen auszuwählen.

Für Roboter schwierig: den Tisch im Labor decken

Shahs Team entwickelte dafür eine besondere Aufgabe. Acht Objekte, nämlich ein Becher, ein Glas, ein Löffel, eine Gabel, ein Messer, ein Essteller, ein kleiner Teller und eine Schüssel, sollten auf verschiedene Art und Weise am Tisch drapiert werden.

Im ersten Schritt „beobachtete“ ein Roboter zufällig ausgewählte menschliche Handlungen beim Decken des Tischs. Dann beauftragten Forscher ihre Maschine damit, den Tisch automatisch in einer bestimmten Konfiguration zu decken, und zwar in realen Experimenten und in der Simulation.

Stellenangebote im Bereich Automatisierungstechnik

Automatisierungstechnik Jobs
WBS TRAINING AG-Firmenlogo
Technische Trainer:in als Schweißlehrer:in für WIG, MIG/MAG und E-Hand (m/w/d) WBS TRAINING AG
Dresden Zum Job 
Torqeedo GmbH-Firmenlogo
Qualitätsingenieur (m/w/d) Produkttests Torqeedo GmbH
Weßling Zum Job 
HVB Ingenieurgesellschaft mbH-Firmenlogo
Elektroingenieur (m/w/d) Bereich Elektrische Energieanlagen in der Infrastruktur HVB Ingenieurgesellschaft mbH
Wandlitz Zum Job 
KLN Ultraschall AG-Firmenlogo
Konstruktionsingenieur / Techniker / Meister (m/w/d) zur Vertriebsunterstützung KLN Ultraschall AG
Heppenheim Zum Job 
IPH Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH-Firmenlogo
Ingenieur Elektrotechnik LV (m/w/d) IPH Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH
Berlin-Marzahn Zum Job 
Technische Universität Darmstadt-Firmenlogo
Professur (W3) für Umformtechnologie Technische Universität Darmstadt
Darmstadt Zum Job 
Sauer Compressors-Firmenlogo
Entwicklungsingenieur (m/w/d) Sauer Compressors
Heidrive GmbH-Firmenlogo
Entwicklungsingenieur Elektrotechnik (m/w/d) Heidrive GmbH
Kelheim Zum Job 
Heidrive GmbH-Firmenlogo
Elektroniker oder Mechatroniker im Versuch und Prüffeld (m/w/d) Heidrive GmbH
Kelheim Zum Job 
FlowChief GmbH-Firmenlogo
Vertriebsingenieur:in SÜD oder OST-Deutschland (m/w/d) FlowChief GmbH
Raum Süd-, Ostdeutschland Zum Job 
FlowChief GmbH-Firmenlogo
Techniker:in Automatisierung (SCADA) (m/w/d) FlowChief GmbH
Wendelstein Zum Job 
Wirtgen GmbH-Firmenlogo
Software-Ingenieur (m/w/d) Elektrotechnik im Bereich Steuerungssoftware für mobile Arbeitsmaschinen Wirtgen GmbH
Windhagen Zum Job 
WBS Training AG-Firmenlogo
Technische:r Trainer:in für EPLAN (m/w/d) WBS Training AG
deutschlandweit (remote) Zum Job 
Synthos Schkopau GmbH-Firmenlogo
Improvement Engineer - Rubber Process Technology (m/w/d) Synthos Schkopau GmbH
Schkopau Zum Job 
Niedersachsen.next GmbH-Firmenlogo
Themenmanager Manufacturing-X | SCALE-MX (m/w/d) Niedersachsen.next GmbH
Hannover Zum Job 
Universität Duisburg-Essen Campus Duisburg-Firmenlogo
13 positions for PhD candidates (f/m/d) Universität Duisburg-Essen Campus Duisburg
Duisburg Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Projektingenieur (w/m/d) mit Schwerpunkt Tunnelbetrieb Die Autobahn GmbH des Bundes
Bergische Universität Wuppertal-Firmenlogo
Research Assistant (postdoc) in the field of additive manufacturing of metals Bergische Universität Wuppertal
Wuppertal Zum Job 
MICON Gruppe-Firmenlogo
Ingenieur (m/w/d) MICON Gruppe
Nienhagen Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Servicetechniker (w/m/d) Die Autobahn GmbH des Bundes
München Zum Job 

Um erfolgreich zu sein, musste der Roboter viele mögliche Abfolgen der Handlungen berücksichtigen. Das gelang, selbst wenn die Gegenstände absichtlich entfernt, gestapelt oder versteckt worden waren. Wie Shah berichtet, sei dies bei klassischer Programmierung kaum möglich; es komme zu hohen Fehlerraten.

Mit linearer temporaler Logik Handlungen planen

Zum Hintergrund: Bei Entscheidungsaufgaben sind Ansätze des Reinforcement Learning (des bestärkenden Lernens) bekannt. Darunter versteht man Methoden des maschinellen Lernens, bei denen ein Roboter selbstständig eine Strategie erlernt, um „Belohnungen“ zu maximieren. Er bekommt zu bestimmten Zeitpunkten Rückmeldung in Form von „Strafen“ oder „Belohnungen“. Das ist aber nur möglich, falls man klare Kriterien für den Erfolg oder den Misserfolg definieren kann – also nicht generell bei Aufgaben im Haushalt. Schließlich kann man den Tisch – bei gleicher Anordnung der Gegenstände – mit unterschiedlichen Handlungen decken.

Deshalb arbeiten die Forscher mit PUnS („Planning with Uncertain Specifications“). Es basiert auf der linearen temporalen Logik (LTL, Linear Temporal Logic). In LTL können Formeln über die Zukunft von Ereignispfaden aufgestellt werden. Ein Kriterium könnte sein, dass eine Bedingung irgendwann wahr wird oder eine Bedingung wahr bleibt, bis eine andere Bedingung erfüllt wird („der Tisch wurde gedeckt, wenn acht Gegenstände nach einem Muster darauf liegen“).

Die Beobachtungen des Roboters bei 30 menschlichen Demonstrationen mit Geschirr und Besteck ergaben 25 verschiedene LTL-Formeln. Jede Formel kodierte eine etwas andere Präferenz – oder Spezifikation – für die Aufgabe. Unterschiede gibt es im Kompromiss zwischen Flexibilität und Risiko. Darüber sollen später dann die Anwender selbst entscheiden.

Geringe Fehlerrate bei Tests im Labor  

Schließlich führten die Forscher 2.000 Simulationen und Experimente durch. Dabei machte ein Roboter, er sollte den Tisch in verschiedenen Varianten oder Abfolgen decken, nur sechs Fehler. Er zeigte ein ähnliches Verhalten wie Menschen bei dieser Aufgabe. Wenn beispielsweise ein Gegenstand anfangs nicht sichtbar war, beendete der Roboter das Decken an der Stelle, um andere Gegenstände zu greifen. Sobald er auf die Gabel stieß, sie war beispielsweise unter einem Teller, arbeitete er mit diesem Besteckteil weiter.

„Unser System zeigt eine hohe Flexibilität“, kommentiert Shah. „Sonst würde der Roboter stoppen, weil er ‚erwartet‘, ohne die Gabel den restlichen Tisch nicht eindecken zu können.“

Im nächsten Schritt wollen die Forscher ihr System so modifizieren, dass es Robotern hilft, unterschiedliche Signale zu verarbeiten. „Angenommen, eine Person führt einem Roboter vor, wie man einen Tisch an nur einer Stelle aufstellen kann. Die Person kann sagen, ‚mach das Gleiche für alle anderen Stellen‘ oder ‚leg das Messer hier stattdessen vor die Gabel’“, erklärt Shah. „Wir wollen Methoden entwickeln, mit denen sich das System auf natürliche Weise an diese verbalen Befehle anpassen kann, ohne dass zusätzliche Demonstrationen erforderlich sind.“

Lesen Sie auch:

Mehr zum Thema Robotik

Ein Beitrag von:

  • Michael van den Heuvel

    Michael van den Heuvel hat Chemie studiert. Unter anderem arbeitet er für Medscape, DocCheck, für die Universität München und für pharmazeutische Fachmagazine. Seit 2017 ist er selbstständiger Journalist und Gesellschafter von Content Qualitäten. Seine Themen: Chemie/physikalische Chemie, Energie, Umwelt, KI, Medizin/Medizintechnik.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.