Erkenntnisse für die Materialwissenschaften 21.11.2018, 12:24 Uhr

Gold schmilzt bei Raumtemperatur

Einem Wissenschaftler der schwedischen Chalmers University of Technology ist es gelungen, Gold ohne Hitze zu schmelzen. Das eröffnet neue Möglichkeiten, beispielsweise für die Entwicklung von Materialien.

Illustration schmelzendes Gold

Über 1.000 Grad Celsius sind normalerweise nötig, um Gold zu schmelzen. Einem schwedischen Wissenschaftler gelang es bei Zimmertemperatur.

Foto: Alexander Ericson / Chalmers University of Technology

Ludvig de Knoop, Physiker an der Chalmers University of Technology in Göteborg, wollte eigentlich nur beobachten, wie sich Goldatome verhalten, wenn ein elektrisches Feld um sie herum verstärkt wird. Was er schließlich durch das Elektronenmikroskop sah, hatte er jedoch nicht erwartet: Die Oberflächenschichten aus Gold waren bei dem Versuch geschmolzen. Dabei hatte er das Edelmetall bei Zimmertemperatur untersucht. Für die Forscher ist das eine wichtige Erkenntnis, die sie gezielt für weitere Versuche einsetzen können.

Niederdimensionaler Phasenübergang als Ursache?

De Knoop erkannte, dass das elektrische Feld die Goldatome so stark anregte, dass sie ihre geordnete Struktur verloren und die Verbindungen untereinander auflösten. Bei weiteren Versuchen gelang es den Forschern, beim Gold zwischen einer festen und einer geschmolzenen Struktur zu wechseln. Ludvig de Knoop und der Materialwissenschaftler Mikael Juhani Kuisma von der finnischen Universität Jyväskylä hoffen, dass diese Erkenntnisse für verschiedene Anwendungen im Bereich der Materialwissenschaften hilfreich sein könnten.

Außerdem haben die Wissenschaftler eine Theorie, welcher Effekt dazu führt, dass es ihnen gelingt, Gold bei Raumtemperatur schmelzen zu lassen. Sie vermuten, dass die Oberflächenschmelze als sogenannter niederdimensionaler Phasenübergang angesehen werden kann, der zum Bereich der Topologie zählen würde – für die Entdeckung topologischer Phasenübergänge haben die Pioniere David Thouless, Duncan Haldane und Michael Kosterlitz den Nobelpreis für Physik 2016 erhalten. Sie haben die mathematische Topologie, die sich auf abstrakter Ebene mit den Eigenschaften allgemeiner Räume befasst, auf physikalische Systeme angewendet. Ihre Berechnungen haben sich in späteren Experimenten bestätigt. Beispielsweise kann ein hohes Magnetfeld in der Umgebung eines Stoffes seine Eigenschaften sprunghaft verändern, also zu einem Phasenübergang führen. Das ermöglicht die Entwicklung ganz neuer Materialien.

Anwendungen im Bereich der Materialwissenschaften denkbar

Auch das skandinavische Forscherteam erwartet aus seiner Entdeckung praktischen Nutzen für die Wissenschaft. „Da wir die Eigenschaften der Oberflächenatomschichten steuern und ändern können, öffnet sich die Tür für unterschiedliche Arten von Anwendungen. Zum Beispiel könnte die Technologie in verschiedenen Arten von Sensoren, Katalysatoren und Transistoren verwendet werden. Neue Konzepte für kontaktlose Komponenten wären ebenfalls vorstellbar“, sagt Teammitglied Eva Olsson, Professorin an der Fakultät für Physik von Chalmers.

Weiterführende Themen:

Starkes und schnelles Licht dank „On-Demand-Superfluoreszenz“

Neue Superfaser ist achtmal stärker als Spinnenseide

Von Nicole Lücke

Stellenangebote im Bereich Forschung & Entwicklung

Universität Hohenheim-Firmenlogo
Universität Hohenheim Wissenschaftliche/r Mitarbeiter/in für Forschungsarbeiten auf dem Gebiet Mensch-Maschine-Schnittstelle für Landmaschinen Stuttgart
Karlsruher Institut für Technologie (KIT) Campus Nord-Firmenlogo
Karlsruher Institut für Technologie (KIT) Campus Nord Leiter/in der Abteilung "Baden-Württemberg-Programme" Eggenstein-Leopoldshafen
Wietmarscher Ambulanz- und Sonderfahrzeug GmbH-Firmenlogo
Wietmarscher Ambulanz- und Sonderfahrzeug GmbH Konstruktions- und Entwicklungsingenieur (m/w) Wietmarschen
Fraunhofer-Institut für Photonische Mikrosysteme-Firmenlogo
Fraunhofer-Institut für Photonische Mikrosysteme Teamleiter (m/w/d) Mikroaktor- und Sensorsysteme Cottbus
Evonik Industries AG-Firmenlogo
Evonik Industries AG Bioprocess Engineer (m/f/div) Halle-Künsebeck
MULTIVAC Sepp Haggenmüller SE & Co. KG-Firmenlogo
MULTIVAC Sepp Haggenmüller SE & Co. KG Entwicklungsingenieure / Konstrukteure (m/w/d) Systeme Wolfertschwenden Raum Memmingen
FRAUNHOFER-INSTITUT FÜR SOLARE ENERGIESYSTEME ISE-Firmenlogo
FRAUNHOFER-INSTITUT FÜR SOLARE ENERGIESYSTEME ISE Ingenieurin / Ingenieur Charakterisierung Siliziummaterialien / Solarzellen Freiburg
Loramendi Vertriebs GmbH-Firmenlogo
Loramendi Vertriebs GmbH Projektleiter/in für die Industrialisierung der Additiven Fertigung München
DLR-Institut für Vernetzte Energiesysteme e.V.-Firmenlogo
DLR-Institut für Vernetzte Energiesysteme e.V. Ingenieur/in / Physiker/in / Mathematiker/in Entwicklung elektrischer und thermischer Referenzlastprofile Oldenburg
TADANO FAUN GmbH-Firmenlogo
TADANO FAUN GmbH Entwicklungsingenieur (m/w/d) Antriebstechnik Hydraulik Lauf a. d. Pegnitz / bei Nürnberg

Alle Forschung & Entwicklung Jobs

Das könnte sie auch interessieren