Rekursion 17.08.2025, 18:00 Uhr

Türme von Hanoi: Ein Rätsel erklärt die Welt der Algorithmen

Türme von Hanoi: Ein einfaches Puzzle mit großer technischer Bedeutung für Rekursion, Algorithmen und systematisches Denken.

Türme von Hanoi

Das Türme-von-Hanoi-Rätsel: Drei Stäbe, mehrere Scheiben – Ziel ist es, den Turm nach festen Regeln von Stab A auf Stab C zu versetzen.

Foto: Smarterpix / markrhiggins

Die Türme von Hanoi gehören zu den Klassikern der mathematischen Rätselwelt. Was auf den ersten Blick wie ein Kinderspiel aussieht, ist in Wahrheit ein Fenster in die Grundlagen der Informatik und Ingenieurwissenschaften. Hinter den simplen Regeln steckt ein mächtiges Prinzip: Rekursion. Wer das versteht, begreift nicht nur, wie ein Rätsel gelöst wird, sondern auch, wie Computer, Robotiksysteme oder selbst Speicherstrukturen funktionieren.

Ursprung: Eine Legende aus Hanoi

Das bekannte Rätsel „Türme von Hanoi“ geht auf den französischen Mathematiker Édouard Lucas (1842–1891) zurück. Lucas, der für seine Arbeiten zur Zahlentheorie berühmt war, erfand das Spiel im Jahr 1883 und ließ es als Brettspiel unter dem Namen Tour d’Hanoï vermarkten. Um dem eher abstrakten mathematischen Problem einen geheimnisvollen Reiz zu verleihen, erfand Lucas eine Legende, die er dem Spiel beilegte:

In einem sagenumwobenen Tempel in Hanoi, so die Geschichte, stehen drei Stäbe aus reinem Diamant. Auf dem ersten Stab liegen 64 goldene Scheiben, ordentlich nach Größe sortiert, die größte unten, die kleinste ganz oben. Tag und Nacht sollen unermüdliche Priester oder Mönche an dieser Aufgabe arbeiten:

Stellenangebote im Bereich Forschung & Entwicklung

Forschung & Entwicklung Jobs
BAM - Bundesanstalt für Materialforschung und -prüfung-Firmenlogo
Promovierte*r wissenschaftliche*r Mitarbeiter*in (m/w/d) der Fachrichtung Maschinenbau, Werkstofftechnik, Physikalische Ingenieurwissenschaft oder vergleichbar BAM - Bundesanstalt für Materialforschung und -prüfung
ISCAR Germany GmbH-Firmenlogo
Ingenieur / Techniker als Produktspezialist (m/w/d) ISCAR Germany GmbH
Ettlingen Zum Job 
J.P. Sauer & Sohn Maschinenbau GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) J.P. Sauer & Sohn Maschinenbau GmbH
IMS Röntgensysteme GmbH-Firmenlogo
Entwicklungsingenieur (m/w/i) für digitale Inspektionssysteme IMS Röntgensysteme GmbH
Heiligenhaus Zum Job 
SCI-Selection - A Division of Stanton Chase Bad Homburg GmbH-Firmenlogo
Entwicklungsingenieur elektrische Antriebe (m/w/d) SCI-Selection - A Division of Stanton Chase Bad Homburg GmbH
Mannheim Zum Job 
Motherson-Firmenlogo
Lead Hardware Engineer Automotive (m/w/d) Motherson
Stuttgart Zum Job 
über Kienbaum Consultants International GmbH-Firmenlogo
Chief Technology Officer (m|w|d) über Kienbaum Consultants International GmbH
Nordrhein-Westfalen Zum Job 
VIAVI Solutions GmbH-Firmenlogo
Graduate Rotational Program - Entwicklungsingenieur (FPGA / KI) (w/m/d) VIAVI Solutions GmbH
Eningen unter Achalm Zum Job 
VIAVI Solutions GmbH-Firmenlogo
Entwicklungsingenieur für schnelle digitale Hardware (m/w/d) VIAVI Solutions GmbH
Eningen unter Achalm Zum Job 
VIAVI Solutions GmbH-Firmenlogo
Entwicklungsingenieur für Hardwaretests (LabVIEW / TestStand) (m/w/d) VIAVI Solutions GmbH
Eningen unter Achalm Zum Job 
BAUER KOMPRESSOREN GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Hochdruck-Wärmetauscher BAUER KOMPRESSOREN GmbH
München Zum Job 
MAN Truck & Bus SE-Firmenlogo
Entwicklungsingenieur Mechatronik für Batterieentwicklung (w/m/d) MAN Truck & Bus SE
Nürnberg Zum Job 
ER-WE-PA GmbH Davis Standard-Firmenlogo
Automatisierungsingenieur (m/w/d) im Sondermaschinenbau ER-WE-PA GmbH Davis Standard
Erkrath Zum Job 
B. Braun Melsungen AG-Firmenlogo
Senior Project Manager (w/m/d) Spritzgießanlagen B. Braun Melsungen AG
Melsungen Zum Job 
Oncotec Pharma Produktion GmbH-Firmenlogo
Betriebsingenieur Reinstmedien (m/w/d) Oncotec Pharma Produktion GmbH
Dessau-Roßlau Zum Job 
PFISTERER Kontaktsysteme GmbH-Firmenlogo
Entwicklungsingenieur Hochspannungstechnik - HVDC (m/w/d) PFISTERER Kontaktsysteme GmbH
Winterbach Zum Job 
Losberger Modular Systems GmbH-Firmenlogo
Bauingenieur für Produktentwicklung (m/w/d) Losberger Modular Systems GmbH
Mannheim Zum Job 
WITTENSTEIN motion control GmbH-Firmenlogo
Systemingenieur (w/m/d) WITTENSTEIN motion control GmbH
Igersheim-Harthausen Zum Job 
B-TEC GmbH Geräte- und Anlagentechnik-Firmenlogo
Ingenieur (m/w/d) als Teamleiter - Produktentwicklung und PLM B-TEC GmbH Geräte- und Anlagentechnik
Burgdorf-Ehlershausen Zum Job 
Leibniz Universität Hannover-Firmenlogo
Universitätsprofessur (W3) für Fertigungstechnik und Werkzeugmaschinen Leibniz Universität Hannover
Hannover Zum Job 

Sie müssen die Scheiben – nach den bekannten Regeln, dass immer nur eine Scheibe bewegt werden darf und niemals eine größere auf einer kleineren liegen darf – von einem Stab auf einen anderen umschichten.

Die Legende steigert die Dramatik, indem sie ein apokalyptisches Ende andeutet: Sobald alle 64 Scheiben ordnungsgemäß umgesetzt sind, endet die Welt.

Die Zahl der Züge ist gewaltig:

264−1=18.446.744.073.709.551.615

 

In Worten: achtzehn Trillionen, vierhundertsechsundvierzig Trilliarden, siebenhundertvierundvierzig Billionen, dreiundsiebzig Milliarden, siebenhundertneuntausendfünfhunderteinundfünfzigtausendsechshundertfünfzehn.

Selbst wenn die Mönche jede Sekunde eine Scheibe bewegten, wären das rund 585 Milliarden Jahre. Zum Vergleich: Das Universum ist derzeit etwa 13,8 Milliarden Jahre alt.

Die Regeln – und warum sie faszinieren

Das Rätsel besteht aus drei Stäben und n Scheiben. Zu Beginn liegen alle Scheiben geordnet auf Stab A – die größte unten, die kleinste oben. Ziel ist es, den gesamten Turm auf Stab C umzusetzen. Dabei gelten zwei einfache Regeln: Es darf immer nur eine Scheibe pro Zug bewegt werden, und niemals darf eine größere Scheibe auf einer kleineren liegen.

Schon bei wenigen Scheiben steigt die Komplexität rasant:

  • 3 Scheiben → 7 Züge
  • 4 Scheiben → 15 Züge
  • 10 Scheiben → 1.023 Züge
  • 20 Scheiben → über 1 Million Züge

Das Spiel ist damit ein perfektes Beispiel für exponentielles Wachstum – eine Art „Mathematik zum Anfassen“.

Der Algorithmus: Rekursion in Reinform

Die Türme von Hanoi sind ein Paradebeispiel für rekursive Algorithmen.

Das Grundprinzip lautet:

  • Um n Scheiben zu bewegen, verschiebe zunächst n−1 Scheiben auf den Hilfsstab.
  • Dann bewege die größte Scheibe auf das Ziel.
  • Anschließend verschiebe die n−1 Scheiben vom Hilfsstab auf das Ziel.

Diese Selbstähnlichkeit – das große Problem in kleinere, gleichartige Teilprobleme zu zerlegen – ist das Herzstück der Rekursion.

Formel für die minimalen Züge:

Z(n)=2n−1

 

Damit wächst die Zahl der Züge exponentiell mit der Anzahl der Scheiben. Ingenieurinnen und Ingenieure erkennen sofort: Solche Wachstumsraten führen in der Praxis schnell an physikalische oder zeitliche Grenzen.

Beispiel: Drei Scheiben Schritt für Schritt

Ausgangslage: Drei Scheiben auf Stab A. Ziel: Turm vollständig nach C. Hilfsstab: B.

  1. A → C (Scheibe 1)
  2. A → B (Scheibe 2)
  3. C → B (Scheibe 1)
  4. A → C (Scheibe 3)
  5. B → A (Scheibe 1)
  6. B → C (Scheibe 2)
  7. A → C (Scheibe 1)

Nach 7 Zügen liegt der gesamte Turm korrekt auf Stab C.
Das Muster ist erkennbar: Die kleinste Scheibe bewegt sich bei jedem ungeraden Zug, die größeren folgen in einem klaren Schema.

Minimaler Programmcode (Python-Beispiel)

Das obige Beispiel lässt sich recht einfach programmieren. Schon wenige Zeilen Python reichen, um den gesamten Lösungsweg auszugeben:

 

python

Dieses Ergebnis wird ausgegeben:

python ausgabe

Praxisnahe Anwendungen

Was wie ein Spiel wirkt, findet überraschend viele Analogien in der Technik:

  1. Informatik und Softwareentwicklung

Die Türme von Hanoi sind das Standardbeispiel, um Studierenden Rekursion beizubringen. Schon ein paar Zeilen Python- oder C-Code reichen, um den kompletten Lösungsweg automatisch auszugeben. Der Algorithmus ist so schlicht wie elegant.

Darüber hinaus taucht das Prinzip beim Sortieren, bei Dateisystemen oder in Backup-Strategien auf: Daten müssen oft schrittweise umorganisiert werden, wobei Regeln (ähnlich den Spielregeln) beachtet werden müssen.

  1. Robotik

Industrieroboter, die Bauteile stapeln oder in bestimmter Reihenfolge bewegen, lösen faktisch eine Art Hanoi-Problem. Besonders dann, wenn Platz begrenzt ist und nur bestimmte Bewegungen erlaubt sind. Für Ingenieurinnen und Ingenieure in der Automatisierung ist der Bezug unmittelbar.

  1. Netzwerke und Speicherarchitektur

Bei der Optimierung von Speichervorgängen oder beim Auslagern von Prozessen (Caching) tauchen ähnliche Strukturen auf. Es geht immer um die Frage: Welche „Scheibe“ (also welcher Prozess oder Speicherblock) darf wohin verschoben werden, ohne dass eine Regel verletzt wird?

  1. Didaktik der Elektrotechnik

Die exponentielle Wachstumskurve des Rätsels eignet sich hervorragend, um technische Phänomene zu illustrieren – etwa das Laden und Entladen eines Kondensators oder das Wachstum von Schaltungen. Das abstrakte Prinzip wird so anschaulich greifbar.

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.