Antennen in Straßenlaternen 24.03.2020, 06:54 Uhr

Duisburger 5G-Technik soll bei Olympia in Tokio für schnelles Internet sorgen

Mit kleinen Antennen in Straßenlaternen wollen Duisburger Ingenieure dem mobilen Internet auf die Sprünge helfen. Besonders an überlasteten Orten mit hoher Handydichte wie Flughäfen, Bahnhöfen und Fußballstadien soll die Technik eingesetzt werden. Premiere könnte das System bei den Olympischen Spielen (nun 20121) in Tokio haben.

DFB-Pokalfinale 2014 zwischen Borussia Dortmund und dem FC Bayern München im Olympiastadion in Berlin: Ingenieure der Universität Duisburg arbeiten an einer neuen Technik, die auch an überlasteten Orten mit hoher Handydichte wie Fußballstadien, Flughäfen, Bahnhöfen und in Zügen schnelles Internet ermöglicht.

DFB-Pokalfinale 2014 zwischen Borussia Dortmund und dem FC Bayern München im Olympiastadion in Berlin: Ingenieure der Universität Duisburg arbeiten an einer neuen Technik, die auch an überlasteten Orten mit hoher Handydichte wie Fußballstadien, Flughäfen, Bahnhöfen und in Zügen schnelles Internet ermöglicht.

Foto: Soeren Stache/dpa

Die Idee der Ingenieure: Die kleinen Antennen verbinden eine Mobilfunkzelle direkt mit dem schnellen Glasfasernetz. „Wir rechnen bei Einführung der neuen Technik mit maximalen Übertragungsraten von sechs Gigabit pro Sekunde pro Zelle, die dann bald nochmals verzehnfacht werden sollen“, erklärt der Optoelektroniker Prof. Andreas Stöhr.

Möglich ist das nur, weil die Forscher deutlich kleinere Funkzellen planen, sogenannte Picozellen. In diesen können mehr Nutzer gleichzeitig bedient werden. Selbst bei einer Vielzahl von Nutzern versprechen die Ingenieure, dass riesige Datenmengen in Sekundenschnelle bewältigt werden können, sogar HD-Fernsehen auf dem Smartphone in einer überfüllten Wartehalle, in Zügen zur Hauptreisezeit, in Messehallen oder bei Großveranstaltungen soll durch diese Funkzellen möglich sein.

Top Stellenangebote

Zur Jobbörse
Safran Data Systems GmbH-Firmenlogo
Testingenieur / Certified Tester (m/w/d) Safran Data Systems GmbH
Bergisch Gladbach Zum Job 
Fraunhofer-Gesellschaft e.V.-Firmenlogo
Sachgebietsleiter*in Technisches Gebäudemanagement - Betrieb, Wartung & Weiterentwicklung Fraunhofer-Gesellschaft e.V.
München Zum Job 
SWM Services GmbH-Firmenlogo
Inbetriebsetzungsleiter*in für Verfahrenstechnik (m/w/d) SWM Services GmbH
München Zum Job 
Stadtwerke München GmbH-Firmenlogo
Commissioning Manager Control, Field and Automation Engineering (m/w/d) Stadtwerke München GmbH
München Zum Job 
Rhein-Sieg Netz GmbH-Firmenlogo
Ingenieur (m/w/d) Netzbetrieb Rhein-Sieg Netz GmbH
Siegburg Zum Job 
Röhm GmbH-Firmenlogo
Ingenieur (m/w/d) Elektrotechnik / Automatisierungstechnik / EMSR Röhm GmbH
Wesseling Zum Job 
Herrenknecht AG-Firmenlogo
Technischer Redakteur (m/w/d) Herrenknecht AG
Schwanau Zum Job 
Wasserstraßen- und Schifffahrtsverwaltung des Bundes-Firmenlogo
Bauingenieurin /Bauingenieur (m/w/d) Wasserstraßen- und Schifffahrtsverwaltung des Bundes
Brunsbüttel Zum Job 
Wasserstraßen- und Schifffahrtsverwaltung des Bundes-Firmenlogo
Bauingenieurinnen / Bauingenieure (m/w/d) Fachrichtung konstruktiver Ingenieurbau Wasserstraßen- und Schifffahrtsverwaltung des Bundes
Brunsbüttel, Rendsburg Zum Job 
BMI Deutschland GmbH-Firmenlogo
Sicherheitsfachkraft / Fachkraft für Arbeitssicherheit (m/w/d) BMI Deutschland GmbH
Dülmen Zum Job 
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO-Firmenlogo
Wissenschaftliche*r Referent*in der Institutsleiterin Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO
Stuttgart Zum Job 
Fachhochschule Dortmund-Firmenlogo
Vertretungsprofessur "Produktions- und Qualitätsmanagement"; Fachbereich Maschinenbau Fachhochschule Dortmund
Dortmund Zum Job 
BMI Deutschland GmbH-Firmenlogo
Sicherheitsfachkraft / Fachkraft für Arbeitssicherheit (m/w/d) BMI Deutschland GmbH
Dülmen, Heyrothsberge Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Techniker als Fachexperte für Vertragsmanagement, Ausschreibung, Vergabe & Abrechnung (w/m/d) Die Autobahn GmbH des Bundes
Krailling bei München Zum Job 
FUNKE Wärmeaustauscher Apparatebau GmbH-Firmenlogo
Verfahrensingenieur (m/w/d) im technischen Vertrieb Rohrbündelwärmeaustauscher FUNKE Wärmeaustauscher Apparatebau GmbH
Gronau (Leine) Zum Job 
KTR Systems GmbH-Firmenlogo
Berechnungsingenieur (m/w/d) KTR Systems GmbH
ONTRAS-Firmenlogo
Spezialist Strategische Technologie (m/w/d) ONTRAS
Leipzig Zum Job 
Verband der Automobilindustrie e. V. (VDA)-Firmenlogo
Geschäftsführer (m/w/d) VDA QMC in China Verband der Automobilindustrie e. V. (VDA)
Peking, Shanghai (China) Zum Job 
FH Münster-Firmenlogo
Professur für "Strömungstechnik" im Fachbereich Maschinenbau FH Münster
Münster Zum Job 
Technische Hochschule Rosenheim-Firmenlogo
Professorin / Professor (m/w/d) für Applied Embedded Computing Technische Hochschule Rosenheim
Rosenheim Zum Job 

Funktechnologie auch für den Einsatz in Hochgeschwindigkeitszügen

Schon zu den Olympischen Spielen in Tokio soll die neue Technik in den Stadien genutzt werden können, hofft Prof. Stöhr: „Ein weiteres Ziel ist, die superschnelle Funktechnologie in einem japanischen Hochgeschwindigkeitszug oder in Flugzeugen anzuwenden.“ Deshalb kooperieren die Duisburger Ingenieure bereits mit Japan Railways und ENRI, dem Institut für die Entwicklung von Kommunikationssystemen im japanischen Luftverkehr.

Um diese schnellen Zugänge im künftigen 5G-Netz zu ermöglichen, haben die Duisburger Forscher gemeinsam mit Kollegen in Japan, den USA und anderen europäischen Universitäten eine neue Technik entwickelt, die sie Coherent Radio over Fiber (CRoF) nennen. Dabei wandeln die kleinen Antennen die empfangenen Radiosignale so um, dass sie direkt ins Glasfasernetz eingespeist werden können. „Auf diese Weise können Mobilfunkzellen direkt an das Glasfaser-Internet angeschlossen und miteinander verbunden werden“, verspricht Stöhr. Rund 10 Euro soll so eine Antenne kosten.

Handynutzer auf dem Mobile World Congress in Barcelona: Wo viele Nutzer gleichzeitig ins Netz gehen, bricht die Verbindung zum Internet oft zusammen. Mit kleineren Funkzellen und kleinen Antennen, die Signale direkt ins Glasfasernetz einspeisen, wollen Duisburger Ingenieure das Problem lösen.

Handynutzer auf dem Mobile World Congress in Barcelona: Wo viele Nutzer gleichzeitig ins Netz gehen, bricht die Verbindung zum Internet oft zusammen. Mit kleineren Funkzellen und kleinen Antennen, die Signale direkt ins Glasfasernetz einspeisen, wollen Duisburger Ingenieure das Problem lösen.

Quelle: Alberto Estevez/dpa

„Voraussetzung ist, dass Netzbetreiber die neu entwickelten Mobilfunkantennen anbringen, damit sich die Antennendichte erhöht“, so der Ingenieur. Diese kleinen Antennen für das 5G-Netz würden zur Marktreife etwa 50 Mal leistungsfähiger sein als ihre Vorgänger für die Mobilfunkstandards UMTS und LTE. Wegen ihrer geringeren Größe sei es nicht mehr notwendig, große Sendeanlagen auf Dächern zu installieren, eine übliche Straßenlaterne genüge.

Kleinere Funkzellen, dichteres Antennennetz

„Bei dieser wegweisenden CRoF-Technologie ist Deutschland im internationalen Vergleich Vorreiter“, erklärt Stöhr. Damit Europa auch in Zukunft die Führungsrolle im Bereich des drahtlosen Internetzugangs halten kann, soll Stöhr am Aufbau eines europäischen Trainings-Netzwerkes (FiWIN5G) mitarbeiten, das die nächste Generation an Forschern ausbildet. Diese sollen künftig schwerpunktmäßig an Bauelementen, Systemen und Netzwerken forschen.

Einen ganz anderen Weg schlägt das Karlsruher KIT vor: Für schnelles Internet könnten auch brachliegende TV-Frequenzen genutzt werden.

 

Ein Beitrag von:

  • Petra Funk

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.