Windenergie neu durchdacht 22.08.2024, 07:00 Uhr

Mit diesem neuen Modell lassen sich Windparks optimieren

Einem Forscherteam ist es gelungen, eine rund 100 Jahre alte Formel zu verbessern. Dank ihrer neuen Theorie sind nun präzisere Vorhersagen in punkto Leistung und Ertrag möglich. Das könnte auch positive Auswirkungen auf den Entwurf von Rotorblättern haben, was die Effizienz von Windparks steigern könnte.

Offshore-Windanlage mit Animation der Strömung

Das neu entwickelte Modell stellt den Luftstrom um Rotoren selbst unter extremen Bedingungen genau dar.

Foto: MIT – Mit freundlicher Genehmigung der Forschenden

Forschende des MIT haben eine Theorie entwickelt, die den Entwurf und Betrieb von Windparks grundlegend verändern könnte. Mit dem neu konzipierten Modell zur Rotor-Aerodynamik ließe sich die Gestaltung von Turbinenblättern und die Steuerung von Windkraftanlagen erheblich verbessern. Bislang basierte die Konstruktion von Propellern und Windturbinen auf über hundert Jahre alten mathematischen Prinzipien.

Wie sich allerdings herausstellte, erwiesen sich diese Formeln in vielen Situationen als unzureichend. Deshalb fügten die Forschenden empirisch ermittelte Ad-hoc-Korrekturfaktoren hinzu. Das innovative Modell der MIT-Ingenieure stellt nun präzise die Luftströmung um die Rotoren dar – sogar selbst unter extremen Bedingungen wie hohen Kräften, Geschwindigkeiten oder spezifischen Neigungswinkeln. Diese Erkenntnisse könnten nicht nur die Rotorgestaltung revolutionieren, sondern auch die Planung und den Betrieb von Windparks optimieren.

Sonne und Wind konkurrenzlos günstig

Die Forschungsergebnisse stammen von einem Team um Michael Howland, Assistant Professor am MIT. „Mit dieser Theorie können die Kräfte, Strömungsgeschwindigkeiten und die Leistung eines Rotors bestimmt werden, unabhängig davon, ob der Rotor Energie aus dem Luftstrom gewinnt, wie bei einer Windturbine, oder ob er der Strömung Energie zuführt, wie bei einem Schiffs- oder Flugzeugpropeller“, erläutert Howland. Das mathematische Modell eröffnet unmittelbare Anwendungsmöglichkeiten, insbesondere für Betreiber von Windparks. Es ermöglicht eine effiziente Optimierung verschiedener Parameter in Echtzeit – zum Beispiel Turbinenausrichtung, Rotordrehzahl und Blattwinkel, um die Leistungsabgabe zu maximieren und gleichzeitig Sicherheitsaspekte zu berücksichtigen.

Stellenangebote im Bereich Energie & Umwelt

Energie & Umwelt Jobs
GW Batterien GmbH-Firmenlogo
Anwendungstechniker (m/w/d) GW Batterien GmbH
Zwickau Zum Job 
Daldrop + Dr.Ing.Huber GmbH + Co. KG-Firmenlogo
Projektleiter TGA (m/w/d) Reinraumtechnik Daldrop + Dr.Ing.Huber GmbH + Co. KG
Neckartailfingen Zum Job 
naturenergie netze GmbH-Firmenlogo
Ingenieur als Teamleiter Netzleitstelle (m/w/d) naturenergie netze GmbH
Rheinfelden (Baden), Donaueschingen Zum Job 
Stadtwerke Potsdam GmbH-Firmenlogo
Experte (m/w/d) Energieinfrastruktur und Bauprojekte - Planung und Realisierung - Stadtwerke Potsdam GmbH
Potsdam Zum Job 
Gemeinde Steinen-Firmenlogo
Leiter/in des Fachbereichs Bauen und Umwelt (w/m/d) Gemeinde Steinen
Steinen Zum Job 
Netz Leipzig GmbH-Firmenlogo
Teamleitung (m/w/d) Leitstelle Strom Netz Leipzig GmbH
Leipzig Zum Job 
Duale Hochschule Sachsen (DHSN)-Firmenlogo
W2-Professur für "Umweltanalytik und Umwelttechnik" (m/w/d) Duale Hochschule Sachsen (DHSN)
AOK Hessen. Die Gesundheitskasse.-Firmenlogo
Ingenieur / Elektrotechniker (m/w/d) AOK Hessen. Die Gesundheitskasse.
Groß-Gerau Zum Job 
Alltech Dosieranlagen GmbH-Firmenlogo
Vertriebs- und Projektingenieur (m/w/d) Schwerpunkt: Verfahrenstechnik / Umwelttechnik / Elektrotechnik Alltech Dosieranlagen GmbH
Weingarten Zum Job 
SOCON Sonar Control Kavernenvermessung GmbH-Firmenlogo
Vermessungsingenieur / Geodäsie (m/w/d) SOCON Sonar Control Kavernenvermessung GmbH
Gießen Zum Job 
Stadtwerke Essen AG-Firmenlogo
Ingenieur / Techniker (gn) für Kanal- und Entwässerungsplanung Stadtwerke Essen AG
ista SE-Firmenlogo
Projektingenieur - Technische Gebäudeausrüstung und Energiedienstleistungen (m/w/d) ista SE
Region Hamburg, Berlin oder Düsseldorf / Köln (West) Zum Job 
Landkreis Wesermarsch-Firmenlogo
Diplom-Ingenieur*in (m/w/d) / Bachelor / Master der Fachrichtungen Agrarwirtschaft, Landespflege, Landschaftsplanung/-entwicklung oder Landschaftsökologie Landkreis Wesermarsch
Forschungszentrum Jülich GmbH-Firmenlogo
PhD Position - Techno-economic assessment of geothermal plants with material co-production in energy systems Forschungszentrum Jülich GmbH
Jülich Zum Job 
Landkreis Friesland-Firmenlogo
Kommunaler Energiemanager (m/w/d) Landkreis Friesland
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur (w/m/d) für Geotechnik, Abfall, Altlasten und Georisiken Die Autobahn GmbH des Bundes
Nürnberg Zum Job 
HIC Consulting-Firmenlogo
Geschäftsführer (m/w/d) HIC Consulting
Hamburg Zum Job 
Hochschule Emden/Leer-Firmenlogo
Wissenschaftliche*r Mitarbeiter*in im Projekt "OS-Lotse" Hochschule Emden/Leer
Stadt Langenhagen-Firmenlogo
Leiter (m/w/d) der Abteilung Stadtgrün und Friedhöfe Stadt Langenhagen
Langenhagen Zum Job 

Grenzen der ursprünglichen Formel für Windenergie entdeckt

Die bisherige Impulstheorie, die die Wechselwirkung zwischen Rotoren und ihrer Umgebung beschreibt, stammt aus dem späten 19. Jahrhundert. Sie erlaubte Ingenieurinnen und Ingenieuren, die maximale Leistung einer bestimmten Rotorkonstruktion zu berechnen oder die erforderliche Leistung für eine gewünschte Antriebskraft bei Propellern zu ermitteln. Auf dieser Grundlage definierte der Physiker Albert Betz 1920 die theoretische Obergrenze für die Energiegewinnung aus Wind, die sogenannte Betz-Grenze von 59,3 Prozent der kinetischen Windenergie. Allerdings zeigten sich bald die Grenzen dieser Theorie, vor allem bei höheren Kräften, schnelleren Blattdrehzahlen oder veränderten Blattwinkeln. Die Theorie besagt, dass die Kraft ab einer bestimmten Rotationsgeschwindigkeit oder einem bestimmten Rotorblattwinkel abnehmen sollte. Doch Testreihen zeigten das Gegenteil: Die Kraft nahm weiter zu. „Die Theorie ist also nicht nur quantitativ, sondern auch qualitativ falsch“, sagt Howland.

Das neue Modell des MIT-Teams berücksichtigt die komplexen Wechselwirkungen zwischen Luftströmung und Turbinen, die in realen Windparks auftreten. Die Forschenden erkannten, dass die ursprüngliche Annahme eines schnellen Druckausgleichs hinter dem Rotor bei zunehmender Schubkraft immer ungenauer wird. Besonders relevant ist dies nahe der Betz-Grenze, dem angestrebten Betriebsbereich für Turbinen. „Wir haben also die Vorhersage von Betz, wo wir die Turbinen betreiben sollten, und innerhalb von zehn Prozent dieses Betriebssollwertes, der unserer Meinung nach die Leistung maximiert, verschlechtert sich die Theorie völlig und funktioniert nicht“, erläutert Howland. Das Team entwickelte deshalb noch einen weiteren Ansatz, um die eindimensionale Modellierung der ursprünglichen Formel zu überwinden, indem sie Gleichungen zur Vorhersage des Auftriebs dreidimensionaler Flügel integrierten.

Bessere Aerodynamik machen Windparks effizienter

Das neu entwickelte einheitliche Impulsmodell des MIT-Teams führt zu einer Neubewertung des Betz-Grenzwerts. Es zeigt, dass es möglich ist, etwas mehr Leistung zu erzielen. Es handelt sich also nicht um eine signifikante Änderung, und trotzdem wird der Betz-Grenzwert, der seit hundert Jahren als Faustregel gilt, aufgrund der neuen Theorie tatsächlich geändert. Das Modell liefert zudem Einblicke, wie die Leistung von Turbinen maximiert werden kann, die nicht optimal zum Luftstrom ausgerichtet sind – ein Aspekt, der sich mit dem ursprünglichen Betz-Grenzwert nicht erklären ließ.

Die praktische Anwendung dieser Erkenntnisse erfordert keine Änderungen an den bestehenden Komponenten der Windparks. Das neue Modell ermöglicht nun eine präzisere Vorhersage der Leistungsabgabe einer Turbine bei Veränderungen wie dem Winkel zum Wind. „Mit unserer Theorie kann man zum ersten Mal direkt und ohne empirische Korrekturen sagen, wie man eine Windkraftanlage betreiben sollte, um ihre Leistung zu maximieren“, erklärt Howland. Darüber hinaus lassen sich die Erkenntnisse auch bei Propellern von Flugzeugen und Schiffen sowie hydrokinetische Turbinen einsetzen. Das System steht als Open-Source-Software zur Verfügung und soll die Windenergieforschung voranbringen, um die notwendige Kapazität und Zuverlässigkeit zur Bekämpfung des Klimawandels zu entwickeln.

Ein Beitrag von:

  • Nina Draese

    Nina Draese hat unter anderem für die dpa gearbeitet, die Presseabteilung von BMW, für die Autozeitung und den MAV-Verlag. Sie ist selbstständige Journalistin und gehört zum Team von Content Qualitäten. Ihre Themen: Automobil, Energie, Klima, KI, Technik, Umwelt.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.