Energie speichern 22.11.2022, 07:00 Uhr

Kleinere, leichtere Batterien: Ingenieure lösen ein langjähriges Problem

Verzweigte Metallfäden beeinträchtigen die Leistung von Lithium-Festkörperbatterien. Wissenschaftlerinnen und Wissenschaftler haben herausgefunden, wie diese sogenannten dentritischen Strukturen entstehen – und wie sie sich vermeiden lassen.

Batterie-Dendrit

Mechanischer Druck lenkt die Bildung von Dendriten – und hilft, Kurzschlüsse in Batterien zu vermeiden.

Foto: MIT

Eine Entdeckung könnte endlich die Tür zur Entwicklung einer neuen Art von wiederaufladbaren Lithiumbatterien öffnen, die leichter, kompakter und sicherer sind als die derzeitigen Versionen. Denn Forschende am Massachusetts Institute of Technology (MIT) in Cambridge beheben eine zentrale Schwachstelle: Normalerweise bilden sich Metallfäden, sogenannte Dendriten. Sie überbrücken den Raum zwischen den Metallelektroden, was schlimmstenfalls zu Kurzschlüssen führen kann.

Die Ingenieurinnen und Ingenieure fanden heraus, dass das Anlegen von mechanischem Druck auf das feste Elektrolytmaterial Dendriten dazu bringt, sich nicht mehr von einer Elektrode zur anderen zu bewegen, sondern seitwärts in Richtung der Kraft zu wandern – ohne dass Kurzschlüsse drohen.

Top Stellenangebote

Zur Jobbörse
Stadt Stuttgart-Firmenlogo
Projektleiter*in Architektur für öffentliche Bauten (m/w/d) Stadt Stuttgart
Stuttgart Zum Job 
Campana & Schott-Firmenlogo
Consultant Projektmanagement (w/m/d) für Infrastrukturprojekte Campana & Schott
Frankfurt, Berlin, Hamburg, Köln, München, Stuttgart Zum Job 
Campana & Schott-Firmenlogo
Technologiebegeisterte Absolventen (w/m/d) für den Einstieg im Consulting Campana & Schott
Frankfurt, Berlin, Hamburg, Köln, München, Stuttgart Zum Job 
Technische Universität Graz-Firmenlogo
Universitätsprofessur für High-Performance Large-Engine Systems (m/w/d) Technische Universität Graz
Graz (Österreich) Zum Job 
Holzer Firmengruppe-Firmenlogo
System Ingenieur (m/w/d) Holzer Firmengruppe
Rutesheim, Weissach Zum Job 
Fachhochschule Nordwestschweiz FHNW-Firmenlogo
Research Associate Polymer Chemistry (m/f/d) Fachhochschule Nordwestschweiz FHNW
Windisch (Schweiz) Zum Job 
WESGO Ceramics GmbH-Firmenlogo
Lean Manager (m/w/d) WESGO Ceramics GmbH
Erlangen Zum Job 
Delphin Technology AG-Firmenlogo
Technical Sales Manager (m/w/d) Delphin Technology AG
Bergisch Gladbach Zum Job 
BAUER GasTec GmbH-Firmenlogo
Projektleiter (m/w/d) für Wasserstoffverdichter BAUER GasTec GmbH
München Zum Job 
Koehler Paper SE-Firmenlogo
Ingenieur Prozesstechnologie (m/w/d) Koehler Paper SE
TIG Automation GmbH-Firmenlogo
Betriebswirt / Wirtschaftsingenieur (m/w/d) Unternehmensabläufe & Strategie TIG Automation GmbH
Hamburg Zum Job 
SFS Group Germany GmbH-Firmenlogo
Techniker / Anwendungstechniker im Innendienst (m/w/d) SFS Group Germany GmbH
Oberursel Zum Job 
Allbau Managementgesellschaft mbH-Firmenlogo
Bauprojektleitung (m/w/d) "Technische Projekte" Allbau Managementgesellschaft mbH
Berliner Wasserbetriebe-Firmenlogo
Vorstandsreferent:in (w/m/d) Berliner Wasserbetriebe
VEM motors GmbH-Firmenlogo
Konstrukteur (m/w/d) VEM motors GmbH
Wernigerode Zum Job 
Leipziger Wohnungs- und Baugesellschaft mbH-Firmenlogo
Projektleiter Haustechnik (w/m/d) Fachingenieur Heizung / Lüftung / Sanitär (w/m/d) Schwerpunkt Trinkwasserhygiene Leipziger Wohnungs- und Baugesellschaft mbH
Leipzig Zum Job 
Leipziger Wohnungs- und Baugesellschaft mbH-Firmenlogo
Projektleiter Haustechnik (w/m/d) Fachingenieur Heizung/Lüftung/Sanitär Leipziger Wohnungs- und Baugesellschaft mbH
Leipzig Zum Job 
BG ETEM-Firmenlogo
Dozenten/-innen (m/w/d) BG ETEM
Bad Münstereifel Zum Job 
Nikola Iveco Europe GmbH-Firmenlogo
Ingenieur (m/w/d) Bordnetzentwicklung und -freigabe Batterie- und Brennstoffzellen-Elektrofahrzeuge Nikola Iveco Europe GmbH
von Hoerner & Sulger GmbH-Firmenlogo
Ingenieure Elektrotechnik (m/w/d) Elektronik-Entwicklung für die Raumfahrt von Hoerner & Sulger GmbH
Schwetzingen Zum Job 

Effizientere Batterien bald marktreif?

Dendriten in Batterien stören die Funktion

Zum Hintergrund: Der Schlüssel zu potenziell effizienteren, langlebigeren Batterien besteht darin, den flüssigen Elektrolyten, der sich zwischen der positiven und negativen Elektrode befindet, durch eine viel dünnere und leichtere Schicht aus festem Keramikmaterial und eine der Elektroden durch festes Lithiummetall zu ersetzen. Dies würde die Gesamtgröße und das Gewicht der Batterie erheblich verringern und das mit flüssigen Elektrolyten verbundene Sicherheitsrisiko beseitigen, da diese entflammbar sind. Bei dieser innovativen Strategie gab es jedoch ein großes Problem: Dendriten.

Ihr Name leitet vom lateinischen Wort für Äste ab; es sind feine Strukturen aus Metall, die sich auf der Lithiumoberfläche ablagern und in den Festelektrolyten eindringen können. Bisher wussten Forscherinnen und Forscher nicht so recht, wie diese Metallfäden entstehen. Unklar war auch, wie man sie verhindern und damit leichte Festkörperbatterien zu einer praktischen Option machen kann.

Überraschende Resultate eines Experiments

Ming Chiang vom MIT hat – wie er berichtet – bei früheren Arbeiten eine „überraschende und unerwartete“ Entdeckung gemacht: Hartes, festes Elektrolytmaterial, das für eine Festkörperbatterie verwendet wird, kann während des Lade- und Entladevorgangs der Batterie von Lithium, einem sehr weichen Metall, durchdrungen werden. Lithiumionen bewegen sich zwischen den beiden Seiten der Batterie.

Durch dieses Hin- und Herpendeln der Ionen verändert sich das Volumen der Elektroden. Dies führt unweigerlich zu mechanischen Spannungen im Festelektrolyten, der mit beiden Elektroden vollständig in Kontakt bleiben muss. „Um das Metall abzuscheiden, muss sich das Volumen ausdehnen, weil man neue Masse hinzufügt“, sagt Chiang. „Auf der Seite der Zelle, auf der das Lithium abgeschieden wird, vergrößert sich also das Volumen. Und wenn auch nur mikroskopisch kleine Fehler vorhanden sind, erzeugt dies einen Druck auf diese Fehler, der zu Rissen führen kann.“ Diese Spannungen, so hat das Team nun gezeigt, verursachen Risse, und Dendriten entstehen.

Während einige Forscherinnen und Forscher bisher davon ausgegangen sind, dass sich Dendriten durch einen rein elektrochemischen und nicht durch einen mechanischen Prozess bilden, zeigen die Experimente des MIT-Teams, dass es mechanische Spannungen sind, die das Problem verursachen.

Jetzt holt die Natrium-Ionen-Batterie auf

Mit der richtigen Kraft bei Batterien gegen Dendriten vorgehen

Nur was lässt sich dagegen tun? Der Prozess der Dendritenbildung findet normalerweise tief im Inneren der undurchsichtigen Materialien der Batteriezelle statt und kann nicht direkt beobachtet werden. Daher entwickelte das Team eine Methode zur Herstellung dünner Zellen mit transparenten Elektrolyten. Ihr Ziel war, alle Teilschritte zu beobachten und aufzuzeichnen. „Man kann sehen, was passiert, wenn man das System zusammendrückt, und man kann sehen, ob sich die Dendriten in einer Weise verhalten, die einem Korrosionsprozess oder einem Bruchprozess entspricht“, berichtet Cole Fincher vom MIT.

Das Team hat gezeigt, dass es das Wachstum der Dendriten direkt beeinflussen kann, indem es einfach Druck ausübt und wieder wegnimmt, wodurch die Dendriten in perfekter Ausrichtung mit der Richtung der Kraft zickzackförmig laufen.

Durch die Anwendung mechanischer Spannungen auf den Festelektrolyten wird die Bildung von Dendriten nicht verhindert, aber die Richtung ihres Wachstums wird gesteuert. Das heißt, sie können so ausgerichtet werden, dass sie parallel zu den beiden Elektroden bleiben und nicht auf die andere Seite übertreten können. Sprich: Es treten keine Kurzschlüsse auf.

Batterie ohne Dendriten – so geht es weiter

Nachdem die Forschenden grundlegenden Prinzipien demonstriert haben, wollen sie jetzt einen funktionalen Batterieprototyp entwickeln. Obwohl sie ein Patent angemeldet haben, planen die MIT-Ingenieurinnen und -Ingenieure nicht, das System selbst zu vermarkten, da es bereits Unternehmen gibt, die an der Entwicklung von Festkörperbatterien arbeiten.

Mehr zum Thema Batterien:

Ein Beitrag von:

  • Michael van den Heuvel

    Michael van den Heuvel hat Chemie studiert. Unter anderem arbeitet er für Medscape, DocCheck, für die Universität München und für pharmazeutische Fachmagazine. Seit 2017 ist er selbstständiger Journalist und Gesellschafter von Content Qualitäten. Seine Themen: Chemie/physikalische Chemie, Energie, Umwelt, KI, Medizin/Medizintechnik.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.