Geothermie 08.03.2013, 22:00 Uhr

Forscher entwickeln energieautarke Sensorsysteme für rauen Untertageeinsatz

Unter den erneuerbaren Energiearten kommt der Geothermie und der dazu erforderlichen Tiefbohrtechnik wachsende Bedeutung zu. Lagerstätte und Speichergestein müssen genau bekannt sein. Eines der wichtigsten Detailprobleme könnte mit einer Entwicklung von Forschern aus dem Ruhrgebiet jetzt gelöst sein: Sensoren zuverlässig und effizient über längere Zeit vor Ort im Bohrloch mit Energie zu versorgen.

Bohrung für eine Erdwärme-Pumpe: Sonden messen die Bedingungen im Untergrund und brauchen dafür eine autarke Stromversorgung. Normale Akkus sind den hohen Temperaturen nicht gewachsen.

Bohrung für eine Erdwärme-Pumpe: Sonden messen die Bedingungen im Untergrund und brauchen dafür eine autarke Stromversorgung. Normale Akkus sind den hohen Temperaturen nicht gewachsen.

Foto: Agentur für Erneuerbare Energien

Bereits während einer geothermischen Erkundung beim Niederbringen eines Bohrlochs geht es um die In-situ-Charakterisierung. Welche Temperatur, welche Feuchte, welche seismischen und chemischen Bedingungen herrschen vor Ort? Während der anschließenden Produktionsphase muss ein Langzeitmonitoring erfolgen, um zuverlässig Wärme aus dem Untergrund ernten zu können.

Die Betreiber eines solchen geothermischen Reservoirs brauchen dazu spezifische, hochauflösende Sensoren. Diese sollen über eine autarke und möglichst langzeitverfügbare Energieversorgung der Bohrlochsonden sowie der kleinkalibrigen Sonden zuverlässig betrieben werden können. In der Regel müssen sie druck- und vor allem temperaturstabil sein. Eine wirkliche Herausforderung für die Ingenieure, der jetzt Wissenschaftler aus dem Ruhrgebiet nachgegangen sind.

Top Stellenangebote

Zur Jobbörse
Hochschule Esslingen-Firmenlogo
Professor:in für das Lehrgebiet "Konstruktion" Hochschule Esslingen
Göppingen, Esslingen Zum Job 
Safran Data Systems GmbH-Firmenlogo
Testingenieur / Certified Tester (m/w/d) Safran Data Systems GmbH
Bergisch Gladbach Zum Job 
Fraunhofer-Gesellschaft e.V.-Firmenlogo
Sachgebietsleiter*in Technisches Gebäudemanagement - Betrieb, Wartung & Weiterentwicklung Fraunhofer-Gesellschaft e.V.
München Zum Job 
Hochschule Esslingen-Firmenlogo
Professor:in für das Lehrgebiet "Elektrotechnik und Elektrische Energieversorgung" Hochschule Esslingen
Göppingen, Esslingen Zum Job 
Rhein-Sieg Netz GmbH-Firmenlogo
Ingenieur (m/w/d) Netzbetrieb Rhein-Sieg Netz GmbH
Siegburg Zum Job 
Röhm GmbH-Firmenlogo
Ingenieur (m/w/d) Elektrotechnik / Automatisierungstechnik / EMSR Röhm GmbH
Wesseling Zum Job 
BMI Deutschland GmbH-Firmenlogo
Sicherheitsfachkraft / Fachkraft für Arbeitssicherheit (m/w/d) BMI Deutschland GmbH
Dülmen Zum Job 
SWM Services GmbH-Firmenlogo
Inbetriebsetzungsleiter*in für Verfahrenstechnik (m/w/d) SWM Services GmbH
München Zum Job 
Stadtwerke München GmbH-Firmenlogo
Commissioning Manager Control, Field and Automation Engineering (m/w/d) Stadtwerke München GmbH
München Zum Job 
Herrenknecht AG-Firmenlogo
Technischer Redakteur (m/w/d) Herrenknecht AG
Schwanau Zum Job 
Wasserstraßen- und Schifffahrtsverwaltung des Bundes-Firmenlogo
Bauingenieurin /Bauingenieur (m/w/d) Wasserstraßen- und Schifffahrtsverwaltung des Bundes
Brunsbüttel Zum Job 
Wasserstraßen- und Schifffahrtsverwaltung des Bundes-Firmenlogo
Bauingenieurinnen / Bauingenieure (m/w/d) Fachrichtung konstruktiver Ingenieurbau Wasserstraßen- und Schifffahrtsverwaltung des Bundes
Brunsbüttel, Rendsburg Zum Job 
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO-Firmenlogo
Wissenschaftliche*r Referent*in der Institutsleiterin Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO
Stuttgart Zum Job 
Fachhochschule Dortmund-Firmenlogo
Vertretungsprofessur "Produktions- und Qualitätsmanagement"; Fachbereich Maschinenbau Fachhochschule Dortmund
Dortmund Zum Job 
BMI Deutschland GmbH-Firmenlogo
Sicherheitsfachkraft / Fachkraft für Arbeitssicherheit (m/w/d) BMI Deutschland GmbH
Dülmen, Heyrothsberge Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Techniker als Fachexperte für Vertragsmanagement, Ausschreibung, Vergabe & Abrechnung (w/m/d) Die Autobahn GmbH des Bundes
Krailling bei München Zum Job 
KTR Systems GmbH-Firmenlogo
Berechnungsingenieur (m/w/d) KTR Systems GmbH
ONTRAS-Firmenlogo
Spezialist Strategische Technologie (m/w/d) ONTRAS
Leipzig Zum Job 
FH Münster-Firmenlogo
Professur für "Strömungstechnik" im Fachbereich Maschinenbau FH Münster
Münster Zum Job 
Technische Hochschule Rosenheim-Firmenlogo
Professorin / Professor (m/w/d) für Applied Embedded Computing Technische Hochschule Rosenheim
Rosenheim Zum Job 

Das Institut für Angewandte Energiesysteme (ESYS) der Westfälischen Hochschule Gelsenkirchen und der Hochschule Bochum entwickelt zurzeit mit dem Internationalen Geothermiezentrum in Bochum das Brennstoffzellen-System Geofuelcells. „Ein wichtiger Teilaspekt dieser Aufgabenstellung ist der Aufbau von unter Tage autark – und hier vor allem energieautark – agierenden Sensorsystemen“, erläutert ESYS-Direktor Michael Brodmann.

Rolf Bracke, Leiter des Geothermiezentrums, ergänzt: „Das können Temperaturfühler sein. Aber auch alle anderen Arten von physikalischen, seismologischen, hydraulischen oder chemischen Sensoren zur Bestimmung der Gesteins- und Fluideigenschaften in einem tiefen Bohrloch mit Temperaturen oberhalb von 140 °C.“

Lithium-Ionen-Batterien halten hohe Temperaturen nicht aus

Bis zu diesem Temperaturniveau von 140 °C setzt die Erdöl- und Erdgasindustrie in der Regel Lithium-Ionen-Batterien zur Versorgung ihrer Bohrlochsensorik ein. Diese halten die höheren Temperaturen in geothermischen Bohrlöchern jedoch nicht aus. Auch kabelgebundene Systeme sind bei Tiefen von bis zu 5000 m nicht mehr einsetzbar.

Der Langzeiteinsatz derartiger Sensorsysteme unter Tage stellt an entsprechende Energiespeicherungs- bzw. -gewinnungssysteme Anforderungen, die häufig durch konventionelle Energiespeicher nicht erfüllbar sind. So können sich zum Beispiel Batteriesysteme selbst entladen. Oder für einen Langzeiteinsatz sind Stromspeicherdichten zu gering. In anderen Systemen ist die Temperaturbeständigkeit nicht gegeben.

„Im Rahmen dieses Projekts soll daher ein energieautarkes modulares Sensorsystem für unterschiedliche Einsatzmöglichkeiten aufgebaut werden“, so Brodmann. „Ziel ist hierbei, Überwachungs- und Erkundungsaufgaben unter Tage mithilfe eines Rechnersystems durchzuführen, das hinsichtlich seines Energieverbrauchs optimiert und von einer brennstoffzellenbasierten Energieversorgung versorgt wird.“

Die Stromversorgung durch ein integriertes Brennstoffzellenmodul ist der eigentliche Clou des Systems. Es ist temperaturbeständiger als Batterien, kompakt, je nach benötigter Energie modular erweiterbar und benötigt keine Versorgungsleitung. Bracke: „Im ersten Schritt wird die Brennstoffzelle eine Leistung von circa 40 W abgeben. Final denken wir an 300 W bis 400 W. Dies ist jedoch mehr oder weniger eine Frage der Dimensionierung der Stacks.“

Forscher entwickelten Brennstoffzellensystem als Energiequelle

Für die autarke Langzeitversorgung der Bohrlochsensorik mit elektrischer Energie wurden in der Vergangenheit unterschiedliche Ansätze – bis zum Untertageeinsatz von Atombatterien – betrachtet. Im Verlauf des Geofuelcells-Vorhabens soll nun ein PEM-Brennstoffzellensystem entwickelt werden, das unter den rauen Umgebungsbedingungen unter Tage diese Aufgabe übernimmt.

Brodmann: „Damit wird es möglich, die Vorteile der im Vergleich zu konventionellen Batteriesystemen größeren, im Wasserstoff gespeicherten Energiemenge pro Volumen für diese Technik nutzbar zu machen. Zudem ergibt sich eine leichte Skalierbarkeit des Systems, weil die Größe des Wasserstofftanks die Energiemenge bestimmt, die Brennstoffzellengröße hingegen durch die benötige Leistung vorgegeben ist.“

Bei der Bohrlochsensorik sind zwei Verfahren zu unterscheiden: zum einen die Versorgung einer Sensoreinrichtung während des Bohrvorgangs, deren Aufgaben die Vorortüberwachung des Bohrvorgangs und die geowissenschaftliche Strukturaufklärung sind. Diese Verfahren werden für vielfältige tiefbohrtechnische Prozesse in der Kohlenwasserstoffindustrie, der Geothermie und zukünftig wohl auch in der CCS-Technologie (Carbon Capture and Storage) eingesetzt werden.

„Zum anderen gilt es in vielen Fällen“, ergänzt Rolf Bracke, „im Nachgang des Bohrvorgangs eine kontinuierliche Überwachung der Umgebungsbedingungen im Bohrloch durchzuführen zum Beispiel die Überwachung des Grundwasserchemismus im Bereich von Sanierungsgebieten – das heißt im Umweltschutz – oder die kontinuierliche Überwachung von Trinkwasserbrunnen.“ Hier würde der Einsatz von konventionellen Batteriesystemen ein großes Risiko darstellen. Vor allem bei der kontinuierlichen Überwachung in Gebieten, in denen keine dauerhaften und einfachen Energieversorgungsmöglichkeiten existieren, wird die Bedeutung energieautark arbeitender Überwachungssysteme besonders deutlich. Dazu gehören zum Beispiel dauerhafte Erschütterungsmessungen in erdbebenaktiven Gebieten und andere Anlagen, nachdem die Tiefbohranlage abgebaut ist.

Im Augenblick geht es den Forschern in Gelsenkirchen und Bochum um die Konstruktion einer Brennstoffzelle mit hoher Leistungsdichte für einen Betriebstemperaturbereich zwischen 50 °C und 80 °C. Erst wenn diese erprobt und funktionssicher ist, werden Sensoren für höhere Temperaturen entwickelt, und damit auch für tiefengeothermische Anwendungen.

Ein Beitrag von:

  • Eckart Pasche

    Freier Fachjournalist. Themenschwerpunkte: Energie, Kerntechnik, Rohstoffe, Bergbau, Tunnelbau, Technikgeschichte

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.