Energieforschung 27.01.2012, 12:01 Uhr

Biomethan aus Algen

Wissenschaftler aus Leipzig, Bremen und Karlsruhe forschen an einem neuen Verfahren, mit dem sie Biomethan aus Algen herstellen wollen. Es soll den Weg des Kohlenstoffs von der Fotosynthese zum Bioenergieträger extrem abkürzen, so dass Flächenbedarf und Produktionsaufwand beträchtlich sinken. Bis es einen praktisch anwendbaren Bioreaktor gibt, ist allerdings noch viel Entwicklungsarbeit nötig.

Aus dem kleinen flachen Glaskasten im Labor des Leipziger Instituts für Biologie schimmert es grün und feucht. Das Grün kommt von einer Algenschicht, die auf dem Boden dieses Mikroaquariums in eine feste, transparente Nährstoffschicht eingebettet ist. Darüber liegt eine wässrige Nährstofflösung, in die zwei dünne Metallröhrchen ragen. Sie sind über Schläuche mit der Außenwelt verbunden, über die Kohlendioxid (CO2) und Luft in den Apparat gepumpt werden. „Damit können wir das Verhältnis von Kohlendioxid zu Sauerstoff einstellen“, erklärt Christian Wilhelm, Leiter der Abteilung Pflanzenphysiologie.

Mit einem gezielt dosierten Sauerstoffüberschuss steuern die Wissenschaftler wiederum, wie viel Glykolat die Algenschicht mit ihrer Fotosynthese produziert. Glykolat ist eine niedermolekulare Kohlenstoffverbindung, eine Vorstufe des Zuckers. Es lässt sich in zwei weiteren Verfahrensschritten zu einem Mischgas aus Methan und CO2 weiterverarbeiten.

Top Stellenangebote

Zur Jobbörse
Harro Höfliger Verpackungsmaschinen GmbH-Firmenlogo
Mechaniker / Mechatroniker Sondermaschinenbau (m/w/d) Harro Höfliger Verpackungsmaschinen GmbH
verschiedene Standorte Zum Job 
Harro Höfliger Verpackungsmaschinen GmbH-Firmenlogo
Projektmanager für internationale Projekte (m/w/d) Harro Höfliger Verpackungsmaschinen GmbH
Satteldorf Zum Job 
Harro Höfliger Verpackungsmaschinen GmbH-Firmenlogo
Konstrukteur Maschinenbau (m/w/d) Harro Höfliger Verpackungsmaschinen GmbH
verschiedene Standorte Zum Job 
Harro Höfliger Verpackungsmaschinen GmbH-Firmenlogo
Softwareentwickler - Frontend (m/w/d) Harro Höfliger Verpackungsmaschinen GmbH
STERIS-Firmenlogo
Lead Talent Acquisition Partner STERIS
keine Angabe Zum Job 
E+E Elektronik-Firmenlogo
Vertriebsingenieur (m/w/d) im Außendienst E+E Elektronik
Vertriebsgebiet Neue Bundesländer Zum Job 
Harro Höfliger Verpackungsmaschinen GmbH-Firmenlogo
Projektierer (m/w/d) Harro Höfliger Verpackungsmaschinen GmbH
verschiedene Standorte Zum Job 
TTP Holding GmbH-Firmenlogo
Chemieingenieur / Verfahrensingenieur (m/w/d) 80% - 100% TTP Holding GmbH
Basel (Schweiz) Zum Job 
scanware electronic GmbH-Firmenlogo
Mitarbeiter (m/w/d) im technischer Vertriebsinnendienst scanware electronic GmbH
Bickenbach Zum Job 
DFS Deutsche Flugsicherung GmbH-Firmenlogo
Ingenieur* in der Instandsetzung und Entwicklung DFS Deutsche Flugsicherung GmbH
Langen (Hessen) Zum Job 
TTP Holding GmbH-Firmenlogo
Projektingenieur Pharmatechnik (m/w/d) 80% - 100% TTP Holding GmbH
Basel, Visp (Schweiz) Zum Job 
Dow-Firmenlogo
Campus Fresh Graduate - Electrical Engineer (m/f/d) Dow
Schkopau Zum Job 
TÜV Technische Überwachung Hessen GmbH-Firmenlogo
Sachverständiger für Brand- und Explosionsschutz (m/w/d) TÜV Technische Überwachung Hessen GmbH
Frankfurt am Main Zum Job 
Dow-Firmenlogo
Campus Internship - Process Engineering (Chemie-/Verfahrenstechnik) Dow
Prognost Systems GmbH-Firmenlogo
Elektroingenieur / Maschinenbauingenieur / Techniker (m/w/d) (Elektroniker, Elektrotechniker o. ä.) Prognost Systems GmbH
Dow-Firmenlogo
Jump-start Your Engineering Career at Dow - Talent Pool Dow
Schkopau Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur:in als Expertin oder Experte Kreuzungsprojekte und Qualitätsmanagement (w/m/d) Die Autobahn GmbH des Bundes
Hannover Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieurin oder Ingenieur (w/m/d) Vertragsmanagement Bauwerksprüfung Die Autobahn GmbH des Bundes
Hannover Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Teamleiter (w/m/d) im Projektteam Planung Die Autobahn GmbH des Bundes
RS Ingenieure GmbH & Co. KG-Firmenlogo
Bauingenieur als Tragwerksplaner (m/w/d) RS Ingenieure GmbH & Co. KG

Algen liefern Biomethan in Erdgasqualität

Zuletzt wird das CO2 abgetrennt und in einem Kreislaufprozess wieder den Algen zugeführt. Übrig bleibt Biomethan in Erdgasqualität, das in allgemeine Gasnetze eingespeist oder in Gastanks von Fahrzeugen gepresst werden kann.

Mit diesem Verfahren wollen Wilhelm und seine Kollegen den derzeit üblichen Produktionsprozess von Bioenergieträgern extrem verkürzen. „Eine Pflanze braucht von der Fotosynthese bis zum Erntegut mehrere Tausend Umwandlungsschritte für Kohlenstoff“, erklärt der Leipziger Wissenschaftler. „Dabei werden nur 4 % bis 8 % des aufgenommenen Lichts in Biomasse umgewandelt.“

Beim Algenmethan reichen nur 13 Schritte von der Fotosynthese bis zum Produkt, den dabei theoretisch erreichbaren Wirkungsgrad beziffert Wilhelm mit 30 %. Ernte, Transport und Aufarbeitung der Biomasse entfallen hier: Die Biomethanproduktion würde weitgehend in flachen Bioreaktoren ablaufen, die ähnlich wie Sonnenkollektoren auf Dächer geschraubt werden könnten. Für eine größere Anzahl solcher Bioreaktoren müsste es dann jeweils eine Anlage geben, die das CO2 aus dem Biogasgemisch abtrennt und wieder zu den Bioreaktoren zurückführt.

Algenbioreaktor könnte jährlich 8900 kWh Biomethan auf 1 ha Fläche produzieren

Vielversprechend sind auch die Berechnungen zur Flächeneffizienz, die der Forscher präsentiert. Danach könnte ein Algenbioreaktor, der mit dem derzeit verfügbaren Wissen gebaut wird, jährlich 8900 kWh Biomethan auf 1 ha Fläche produzieren. Zum Vergleich: Bei der heute üblichen Produktion von Biodiesel aus Raps liegt der Flächenertrag bei 12 460 kWh. Ein Vergleich zur etablierten biochemischen Methanproduktion ist noch nicht verfügbar.

Schon die technischen Optimierungen, die Wilhelm und seine Kollegen kurzfristig erreichen wollen, sollen diesen möglichen Ertrag des Algen-Biomethans auf 53 400 kWh vervielfachen. Gelänge es noch, zwei biologische Forschungsziele bei den Algenzellen zu erreichen, halten die Wissenschaftler sogar 365 000 kWh für erreichbar.

Um diese Potenziale zu erschließen, läuft seit 2011 ein interdisziplinäres Forschungsprojekt, in das drei weitere Institute eingebunden sind und das bis 2014 mit 1,5 Mio. € vom Bundesministerium für Bildung und Forschung gefördert wird. Wilhelm koordiniert das Projekt und ist mit seiner Abteilung dafür zuständig, geeignete Algen und biologische Trägermaterialien für sie zu entwickeln.

Grünalge Chlamydomonas spielt Schlüsselrolle für die Biomethan-Produktion

Eine Schlüsselrolle in Wilhelms Forschung spielt die Grünalge Chlamydomonas. Sie wurde von der Natur so eingerichtet, dass sie Glykolat produziert, es aber auch wieder für ihren eigenen Stoffwechsel verbraucht. Außerdem drosselt sie die Fotosynthese, wenn sie Glykolat anhäuft. Und schließlich wird wie bei anderen Pflanzen auch ihre Fotosynthese weniger effektiv, wenn die Lichteinstrahlung stärker wird.

„Wir müssen die Zellen der Alge deshalb genetisch so verändern, dass wir zu einer nachhaltigen Glykolatproduktion kommen“, sagt Wilhelm über das Arbeitsziel für die Chlamydomonas-Alge. Diese Aufgabe hält er in einem „übersichtlichen Zeitraum“ für lösbar. Die möglichen Umweltauswirkungen dieser genetisch veränderten Alge sind nach seiner Ansicht gut beherrschbar. Sie sei nur in einer feuchten Umgebung mit hohem CO2-Angebot lebensfähig, etwa an der Schornsteinspitze eines Kraftwerks.

In dem Forschungsprojekt ist das ebenfalls in Leipzig ansässige Sächsische Institut für Angewandte Biotechnologie dafür zuständig, die Gaserzeugungsprozesse weiterzuentwickeln. Das Institut für Umweltverfahrenstechnik der Universität Bremen forscht an den Membranen, durch die das Glykolat und das daraus erzeugte Gasgemisch in einem künftigen Bioreaktor zur jeweils nächsten Prozessstufe gelangen. Und der Bereich Bioverfahrenstechnik des Karlsruher Instituts für Technologie arbeitet am Konzept für einen Bioreaktor, der die Glykolatproduktion und zwei weitere Prozessstufen bis zum Methan-CO2-Gemisch vereint.

Das alles ist Grundlagenforschung, der Ausgang ist schwer vorherzusagen. Wilhelm rechnet derzeit damit, dass die Wissenschaftler bis Mitte 2013 über ein erstes Demonstrationsmodell für einen Bioreaktor mit den drei wichtigsten Prozessstufen verfügen. Ein Jahr später, am Ende des Forschungsprojekts, könnte dann die Bauanleitung für einen ersten Prototyp vorliegen. Danach dürften dann noch einmal mehrere Jahre Entwicklungsarbeit nötig sein, bis das Verfahren praktisch anwendbar sein wird.

Ein Beitrag von:

  • Stefan Schroeter

    Stefan Schroeter verfasst fachjournalistische Berichte über die Energiewirtschaft.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.