Fotosynthese als Vorbild 20.11.2013, 15:46 Uhr

Bio-Solarzelle läuft mit Proteinen aus japanischer Heißquelle

Seit Jahrzehnten träumen Wissenschaftler von der Bio-Solarzelle. Ein neuer Durchbruch könnte jetzt an der Ruhr-Universität in Bochum gelungen sein. Dort haben Forscher eine Zelle gebaut, die mit einem stabilen Proteinkomplex aus einer japanischen Heißquelle arbeitet.

Ingenieur mit Solarmodul: Solarzellen werden vor allem aus Silizium hergestellt, um Sonnenlicht in Strom umzuwandeln. Forscher sind jedoch dabei, Solarzellen als biologischen Materialien herzustellen. Forscher der Ruhr-Universität haben jetzt eine funktionierende Solarzelle hergestellt, die mit einem stabilen Proteinkomplex aus einer japanischen Heißquelle arbeitet.

Ingenieur mit Solarmodul: Solarzellen werden vor allem aus Silizium hergestellt, um Sonnenlicht in Strom umzuwandeln. Forscher sind jedoch dabei, Solarzellen als biologischen Materialien herzustellen. Forscher der Ruhr-Universität haben jetzt eine funktionierende Solarzelle hergestellt, die mit einem stabilen Proteinkomplex aus einer japanischen Heißquelle arbeitet.

Foto: Bundesverband Solarwirtschaft

Klassische Solarzellen bestehen aus Silizium. Zwar lässt sich mit ihnen hervorragend Strom aus Sonnenlicht gewinnen. Doch ihre Herstellung ist energieintensiv und teuer. Seit Jahren forschen Wissenschaftler deshalb an sogenannten Bio-Solarzellen, bei denen meist die Fotosynthesefähigkeit der Pflanzen Modell steht.

Top Stellenangebote

Zur Jobbörse
Stadtwerke München GmbH-Firmenlogo
Fachbereichsleitung Teilewerkstätten Tram (m/w/d) Stadtwerke München GmbH
München Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur (w/m/d) für den Bereich Straßenbau Die Autobahn GmbH des Bundes
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur (w/m/d) Grundsätze und Qualitätssicherung Die Autobahn GmbH des Bundes
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur (w/m/d) Konstruktiver Ingenieurbau - Bereich Grundsätze und Qualitätssicherung Die Autobahn GmbH des Bundes
Dipl.-Ing. Scherzer GmbH-Firmenlogo
Projektleiter (m/w/d) mit Erfahrungen im Anlagenbau vorzugsweise im Bereich Umschlagsanlagen und Tanklager für die Mineralöl- und Chemieindustrie Dipl.-Ing. Scherzer GmbH
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur (w/m/d) konstruktiver Ingenieurbau Die Autobahn GmbH des Bundes
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur (w/m/d) Bauwerksprüfung und Bauwerksmanagement Die Autobahn GmbH des Bundes
GASCADE Gastransport GmbH-Firmenlogo
Bauleiter (m/w/d) Schwerpunkt Hoch-, Tief- und Ingenieurbau GASCADE Gastransport GmbH
GTB-Berlin Gesellschaft für Technik am Bau mbH-Firmenlogo
TGA-Planer (m/w/d) GTB-Berlin Gesellschaft für Technik am Bau mbH
GTB-Berlin Gesellschaft für Technik am Bau mbH-Firmenlogo
Tragwerksplaner (m/w/d) GTB-Berlin Gesellschaft für Technik am Bau mbH
GTB-Berlin Gesellschaft für Technik am Bau mbH-Firmenlogo
TGA-Projektleitung (m/w/d) GTB-Berlin Gesellschaft für Technik am Bau mbH
Hessenwasser GmbH & Co. KG-Firmenlogo
Fachkraft für Arbeitssicherheit (m/w/d) Hessenwasser GmbH & Co. KG
Groß-Gerau/Dornheim Zum Job 
Musashi Europe GmbH-Firmenlogo
Produktionsplaner / Kapazitätsplaner - Arbeitsvorbereitung / New part & capacity planner (m/w/d) Musashi Europe GmbH
Bad Sobernheim Zum Job 
Stadtwerke Bayreuth-Firmenlogo
Ingenieur Netzanschlüsse (m/w/d) Stadtwerke Bayreuth
Bayreuth Zum Job 
Excellence-Firmenlogo
Projektleiter (m/w) Engineering Excellence
Excellence-Firmenlogo
Embedded Software Entwickler (m/w/d) Excellence
Dortmund Zum Job 
Excellence-Firmenlogo
Software Tester (m/w/d) Excellence
LVR-Klinik Bedburg-Hau-Firmenlogo
Ingenieur (m/w/d) bzw. Bachelor of Engineering der elektrischen Gebäudeausrüstung und elektrischen Infrastruktur LVR-Klinik Bedburg-Hau
Bedburg-Hau Zum Job 
LVR-Klinik Bedburg-Hau-Firmenlogo
Leitung (m/w/d) der Technischen Abteilung LVR-Klinik Bedburg-Hau
Bedburg-Hau Zum Job 
Technische Werke Ludwigshafen am Rhein AG-Firmenlogo
Leiter Großanlagen Müllheizkraftwerk (m/w/d) Technische Werke Ludwigshafen am Rhein AG
Ludwigshafen am Rhein Zum Job 

Das Team um Prof. Wolfgang Schuhmann vom Zentrum für elektrochemische Forschung (CES) hat nun eine Bio-Solarzelle entwickelt, die aus zwei Kammern besteht. In der Ersten zieht der Proteinkomplex „Photosystem 2“ Elektronen aus Wassermolekülen. Diese wandern über Materialien, die Elektronen leiten, sogenannte Redoxhydrogele, zu einer Elektrode.

Die Elektrode ist mit einer weiteren in der zweiten Kammer verbunden. Dort bewirkt der Proteinkomplex „Photosystem 1“, dass die Elektronen auf Sauerstoff übertragen werden. Dabei entsteht Wasser. Diese Arbeit, bei der im geschlossenen System permanent Strom fließt, erledigen die Photosysteme allerdings nur, wenn sie durch Lichtenergie angetrieben werden.

Proteine stammen aus heißer Quelle in Japan

Die Proteinkomplexe Photosystem 1 und 2 erledigen eine vergleichbare Arbeit in Pflanzen: Sie verwandeln während der Fotosynthese Lichtenergie in chemische Energie. Dabei sind sie aber vergleichsweise labil. Für ihre Bio-Solarzelle benötigten die Forscher eine stabilere Ausführung. Deswegen bezogen sie hitzeliebende Cyanobakterien, die in einer heißen Quelle in Japan vorkommen. Die extremen Umweltbedingungen haben die Komplexe in den Bakterien besonders resistent gemacht.

Die neue Bio-Solarzelle besteht aus zwei Kammern: In der ersten bewirkt der Proteinkomplex „Photosystem 1“ (PS1) die Abspaltung von Elektronen aus Wassermolekülen. Diese fließen über Elektroden in die zweite Kammer. Dort koppelt sie PS2 an Sauerstoff und es entsteht Wasser. Angetrieben wird das System von Lichtenergie.

Die neue Bio-Solarzelle besteht aus zwei Kammern: In der ersten bewirkt der Proteinkomplex „Photosystem 1“ (PS1) die Abspaltung von Elektronen aus Wassermolekülen. Diese fließen über Elektroden in die zweite Kammer. Dort koppelt sie PS2 an Sauerstoff und es entsteht Wasser. Angetrieben wird das System von Lichtenergie.

Quelle: Ruhr Universität/Wiley-Verlag

Zwar erreicht die Bio-Solarzelle derzeit nur eine Leistung von einigen Nanowatt pro Quadratzentimeter. Doch das System „kann als Blaupause für die Entwicklung halbkünstlicher und natürlicher Zellsysteme dienen, in denen die Fotosynthese für die lichtgetriebene Erzeugung von sekundären Energieträgern wie beispielsweise Wasserstoff genutzt wird“, erklärt Prof. Matthias Rögner vom Lehrstuhl Biochemie der Ruhr-Universität Bochum.

Solarzellen funktionieren sogar mit Spinat

Vergangenes Jahr entwickelten amerikanische Forscher der Universität in Nashville ein vergleichbares System. Auch sie wollten die Fotosynthesefähigkeit der Pflanzen nutzen. Den Proteinkomplex „Photosystem 1“ extrahierten sie hingegen aus der Spinatpflanze. Sie trugen eine rund einen Mikrometer, also einen tausendstel Millimeter, dicke Schicht auf eine Siliziumoberfläche auf. Beim ersten Einfall von Sonnenlicht nahm der Komplex einen Teil der Energie auf, da sich Positionen von Elektronen veränderten.

Zwar arbeitet die Solarzelle derzeit deutlich weniger effizient als herkömmliche Photovoltaik-Zellen. Doch Wissenschaftler David Cliffel zeigt sich in einem Bericht des Spiegel überzeugt: „Wenn wir unsere bisherige Steigerung von Stromstärke und Spannung beibehalten, können wir in drei Jahren den Bereich von ausgereiften Solarzellen erreichen.“

Ein Beitrag von:

  • Patrick Schroeder

    Patrick Schroeder arbeitet als freiberuflicher Journalist für Zeitschriften und Onlinemagazine wie die VDI Nachrichten und Ingenieur.de.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.