Forschung 20.10.2021, 10:06 Uhr

Vulkan-Ausbruch: Diese KI-Lösung soll Menschenleben retten

Nach dem Vulkanausbruch auf La Palma, spuckt nun Aso in Japan. Wie können Vulkanausbrüche früher erkannt werden? Diese KI-Lösung soll Menschenleben retten.

ngauruhoe vulkan tongariro nationalpark nordinsel

Forscher nutzen künstliche Intelligenz und Satellitenbilder zur genaueren Überwachung von Vulkanen.

Foto: panthermedia.net/Mariusz_Prusaczyk

In Japan ist der Vulkan Aso ausgebrochen. Im Südwesten des Landes steigen dicke Aschewolken bis in eine Höhe von rund 3.500 Metern auf. Der Vulkan schleudert Gesteinsbrocken und Vulkanasche. 110 Vulkane sind in Japan aktiv. Circa 50 davon werden überwacht. Bereits seit einem Monat spuckt der Vulkan Cumbre Vieja auf La Palma Lava und Ruß. Eine Ende ist nicht in Sicht. Zahlreiche Menschen sind bereits wohnungslos geworden. Ein zweiter, nördlicherer Lavastrom ist kurz davor, das Meer zu erreichen. Gefährliche Gase können dadurch entstehen. Werden die Ausbrüche zu spät erkannt? Forschende der Technischen Universität Berlin und des Deutschen GeoForschungszentrums in Potsdam haben eine neue Vulkanüberwachungsplattform geschaffen.

Jedes Jahr brechen Vulkane aus

Weltweit gibt es etwa 1.500 aktive Vulkane. Davon brechen jedes Jahr bis zu 85 aus. Mehr als die Hälfte dieser aktiven Vulkane werden nicht speziell überwacht. Ausbrüche werden dann erst relativ spät – in manchen Fällen zu spät – erkannt. Das soll sich dank der neuen Vulkanüberwachungsplattform „Mounts“ ändern. „Mounts“ steht für „Monitoring Unrest from Space“. In einem Forschungsprojekt unter der Leitung von Sébastien Valade von der Technischen Universität Berlin (TU Berlin) setzte die Forschergruppe auf Satellitenbilder, die sie mithilfe künstlicher Intelligenz analysierte. Dabei überprüften sie auch, ob sie auf ihrer Plattform mehrere Datensätze mit unterschiedlichen Arten von Daten für eine umfassende Überwachung von Vulkanen zusammenführen können. Der Test gelang.

Top Stellenangebote

Zur Jobbörse
Stadt Norderstedt-Firmenlogo
Tiefbauingenieur*in (w/m/d) Stadt Norderstedt
Norderstedt Zum Job 
RITTAL GmbH & Co. KG-Firmenlogo
Projektingenieur (m/w/d) Klimalabor Produktentwicklung Klimatisierungsprodukte RITTAL GmbH & Co. KG
Herborn Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Consultant (m/w/d) im Projektmanagement der Energiewende THOST Projektmanagement GmbH
verschiedene Standorte Zum Job 
THOST Projektmanagement GmbH-Firmenlogo
Wirtschaftsjurist*in / Ingenieur*in (m/w/d) für Contract & Claimsmanagement in Energieprojekten THOST Projektmanagement GmbH
Hamburger Hochbahn AG-Firmenlogo
Senior Projektingenieur Infrastruktur (w/m/d) Hamburger Hochbahn AG
Hamburg Zum Job 
SWM Services GmbH-Firmenlogo
Stellvertretende Laborleitung Trinkwasserlabor (m/w/d) Schwerpunkt Auftragsmanagement und Probenahme SWM Services GmbH
München Zum Job 
Jenoptik AG-Firmenlogo
Manager*in (f/m/d) Engineering Medical Jenoptik AG
ISL Deutsch-Französisches Forschungsinstitut-Firmenlogo
Test- und Messingenieur (m/w/d) ISL Deutsch-Französisches Forschungsinstitut
Saint-Louis (Frankreich) Zum Job 
ISL Deutsch-Französisches Forschungsinstitut-Firmenlogo
Wissenschaftler (m/f/d) für theoretische, experimentelle und numerische Flugmechanik ISL Deutsch-Französisches Forschungsinstitut
Saint-Louis (Frankreich) Zum Job 
ISL Deutsch-Französisches Forschungsinstitut-Firmenlogo
Wissenschaftler (m/w/d) - Computer-Vision / Entwicklung von Algorithmen ISL Deutsch-Französisches Forschungsinstitut
Saint-Louis (Frankreich) Zum Job 
Harmonic Drive SE-Firmenlogo
Konstrukteur (m/w/d) Harmonic Drive SE
Limburg an der Lahn Zum Job 
Harmonic Drive SE-Firmenlogo
Produktmanager Mechatronik (m/w/d) Harmonic Drive SE
Limburg an der Lahn Zum Job 
Hexagon Purus ASA-Firmenlogo
Process Engineer Projects (m/w/d) Hexagon Purus ASA
Hexagon Purus ASA-Firmenlogo
Qualitätsingenieur (m/w/d) operative Qualität Hexagon Purus ASA
Hexagon Purus ASA-Firmenlogo
Qualitätsvorausplaner / APQP Engineer (m/w/d) Hexagon Purus ASA
Universität zu Köln-Firmenlogo
Handwerks-Meister*in / Techniker*in in der Fachrichtung Metallbau Konstruktionstechnik Universität zu Köln
Hutchinson Group-Firmenlogo
Stress Engineer (f/m/d) Hutchinson Group
Göllnitz Zum Job 
Pixida GmbH-Firmenlogo
Project Engineer Automotive (m/f/d) Pixida GmbH
München Zum Job 
T60 Consulting-Firmenlogo
(Senior) Manager (m/w/d) T60 Consulting
Deutschland Zum Job 
Pixida GmbH-Firmenlogo
Projektmanager (m/w/d) Pixida GmbH
München, Ingolstadt Zum Job 

Satellitenbilder statt Messinstrumenten am Vulkan

Aktive Vulkane werden in der Regel durch bodengestützte Sensoren überwacht. Das ist meist kostspielig und die Gegebenheiten vor Ort machen eine Wartung der Messinstrumente manchmal unmöglich. Deshalb steht nur die Hälfte aller aktiven Vulkane mit dieser Technik unter Kontrolle. Bei Vulkanen, die als ruhend oder erloschen gelten, verzichtet man gänzlich auf eine instrumentelle Beobachtung. Doch wie der Vulkan Chaitén in Chile 2008 gezeigt hat, ist dies keine zuverlässige Einschätzung. Er brach nach 8.000 Jahren Inaktivität plötzlich aus.

Der Forschergruppe war daran gelegen, alternative Lösungen für eine Überwachung zu finden, damit auf die Instrumente in der Nähe der Vulkane künftig verzichtet werden kann. Sie zogen Satellitenbilder hinzu. Diese können relevante Daten liefern, wenn eine bodengebundene Überwachung eingeschränkt ist oder komplett fehlt. Für die Wissenschaftler gilt die kontinuierliche Langzeitbeobachtung vom Weltraum aus als Schlüssel. Damit lassen sich Anzeichen sogenannter geologischer Unruhen besser erkennen. In zahlreichen Fällen werden Ausbrüche durch sogenannte Vorläufersignale begleitet – und damit indirekt angekündigt. Sie können einige Stunden oder sogar einige Jahre andauern. Zu diesen Signalen gehören Veränderungen des seismischen Verhaltens, Bodenverformungen, Gasemissionen, ansteigende Temperaturen oder eine Kombination aus all diesen Ausprägungen. „Mit Ausnahme der Seismizität können alle diese Phänomene vom Weltraum aus überwacht werden, indem man verschiedene Wellenlängen im elektromagnetischen Spektrum nutzt“, sagt Sébastien Valade, Leiter des Mounts-Projekts. Dazu nutzen die Forscher unterschiedliche Satellitensensoren, um Veränderungen bei Vulkanen zu erkennen und zu vermessen.

Neuronale Netze erkennen Veränderungen an Vulkanen

In einem weiteren Verfahren testete die Forschergruppe, ob sich künstliche Intelligenz (KI) erfolgreich in das Analyseverfahren der Daten einbauen lässt. Die passenden Algorithmen dafür entwickelte ein Forscher von der TU Berlin. Dieser setzte auf sogenannte künstliche neuronale Netze. Sie eignen sich besonders gut für die automatische Erkennung großer Deformationsereignisse. Vorteil dieser neuronalen Netze: Sie funktionieren ähnlich wie unser menschliches Gehirn und lassen sich trainieren. Das Lernen geschah in diesem Fall mit computergenerierten Bildern, die echten Satellitenbildern stark ähnelten. Anhand der großen Zahl von Beispielen lernte die Software, die gewünschten größeren Veränderungen in echten, ihr bisher nicht bekannten Satellitendaten zu erkennen.

Dies war für die Forscher ein wichtiger „Testballon“, mit dem sie überprüfen wollten, wie sich maschinelles Lernen in das System integrieren lässt. Momentan löst der Deformationsdetektor nur eine einzige Aufgabe. Vision der Forscher: Mehrere KI-Tools für unterschiedliche Aufgaben zu integrieren, damit diese Tools kontinuierlich aus großen Datenmengen lernen, die das System weltweit sammelt. Die großen Datenmengen waren zugleich auch eine der größten Herausforderungen innerhalb des Forschungsprojektes – ebenso die Entwicklung der passenden Software. „Ich bin davon überzeugt, dass automatisierte Überwachungssysteme mithilfe von KI und Daten aus verschiedenen Quellen wie Fernerkundung und erdgebundenen Sensoren in nicht allzu ferner Zukunft dazu beitragen werden, Menschen zeitgerechter und verlässlicher zu warnen“, so Valade.

17 Vulkane unter Beobachtung

Die Forscher erhalten von der „Mounts“-Überwachungsplattform bereits heute wichtige Informationen, die ihnen dabei helfen, verschiedene Prozesse rund um die Vulkane zu verstehen. Das betrifft die Ausbreitung des Magmas unter der Oberfläche ebenso wie die Verteilung vulkanischen Materials während des Ausbruchs sowie die strukturellen Veränderungen der betroffenen Gebiete und die Emission von Gasen in die Atmosphäre. 17 Vulkane überwacht das System aktuell weltweit – darunter auch den Popocatépetl in Mexiko und den Ätna in Italien.

Weitere Beiträge:

Ein Beitrag von:

  • Nina Draese

    Nina Draese hat unter anderem für die dpa gearbeitet, die Presseabteilung von BMW, für die Autozeitung und den MAV-Verlag. Sie ist selbstständige Journalistin und gehört zum Team von Content Qualitäten. Ihre Themen: Automobil, Energie, Klima, KI, Technik, Umwelt.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.