Bergbau 28.01.2011, 19:51 Uhr

Laseranalyse optimiert Rohstoffgewinnung

Ein Verfahren der RWTH Aachen macht es erstmals möglich, dass Mineure schneller als bisher wissen, ob sich die Ausbeutung einer Lagerstätte lohnt. Die neue Technik erlaubt endlich eine Echtzeitanalyse bei der Rohstoffgewinnung. Im Bohrgut werden schon während des Lösevorgangs die gelösten Mineralien bestimmt und das Lagerstättenmodell lässt sich so direkt vor Ort aktualisieren.

„Ofur“ bringt die Bergleute einem wichtigen Ziel näher: direkt vor Ort wissen, was die Lagerstätte birgt. Ofur steht für „Online-Analyse für die Gewinnung mineralischer Rohstoffe“. Und online vor Ort direkt zu analysieren ist ein Vorteil, denn bisher finden bei Sprenglochbohrungen Analysen des durchbohrten Materials ausschließlich im Labor statt.

Eine Zuordnung der Analyseergebnisse zur durchbohrten Gesteinsmasse ist nur mit großem Aufwand möglich. Zudem stehen die Informationen in der Regel, bedingt durch die aufwändige Laboranalyse, erst zeitverzögert zur Verfügung. Das erschwert eine Anpassung des Bohrrasters und eine schnelle Abbauplanung deutlich. Dank Ofur soll jetzt alles einfacher und schneller gehen.

Top Stellenangebote

Zur Jobbörse
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
MB Global Engineering GmbH & Co. KG-Firmenlogo
Projektleiter Elektrotechnik (m/w/d) MB Global Engineering GmbH & Co. KG
Darmstadt Zum Job 
Nitto Advanced Film Gronau GmbH-Firmenlogo
Projektingenieur (m/w/d) im Bereich Maschinen- und Anlagentechnik Nitto Advanced Film Gronau GmbH
Städtische Wohnungsgesellschaft Eisenach mbH-Firmenlogo
Bauingenieur Hochbau / Architekt (m/w/d) Städtische Wohnungsgesellschaft Eisenach mbH
Eisenach Zum Job 
IT-Consult Halle GmbH-Firmenlogo
Trainee SAP HCM / Personalwirtschaft (m/w/d) IT-Consult Halle GmbH
Halle (Saale) Zum Job 
Regierungspräsidium Freiburg-Firmenlogo
Bachelor / Dipl. Ing. (FH) (w/m/d) der Fachrichtung Wasserwirtschaft, Umwelt, Landespflege oder vergleichbar Regierungspräsidium Freiburg
Freiburg im Breisgau Zum Job 
Dorsch Gruppe-Firmenlogo
Projektleiter (m/w/d) Tragwerksplanung mit Perspektive auf Fachbereichsleitung Dorsch Gruppe
Wiesbaden Zum Job 
Clariant SE-Firmenlogo
Techniker* für Automatisierungstechnik Clariant SE
Oberhausen Zum Job 
Die Autobahn GmbH des Bundes, Niederlassung Südbayern-Firmenlogo
Projektingenieur für Brückenbau / Tunnelbau / Ingenieurbau (w/m/d) Die Autobahn GmbH des Bundes, Niederlassung Südbayern
München Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieurin oder Bauingenieur in der Schlichtungsstelle (w/m/d) Die Autobahn GmbH des Bundes
Hannover Zum Job 
Big Dutchman International GmbH-Firmenlogo
Ingenieur / Techniker / Meister (m/w/d) Big Dutchman International GmbH
BOGE KOMPRESSOREN Otto Boge GmbH & Co. KG-Firmenlogo
Entwickler / Konstrukteur für die Verdichterentwicklung (m/w/x) BOGE KOMPRESSOREN Otto Boge GmbH & Co. KG
Großenhain Zum Job 
Griesemann Gruppe-Firmenlogo
Ingenieur Verfahrenstechnik / Prozessingenieur (m/w/d) Griesemann Gruppe
Wesseling, Köln Zum Job 
Energieversorgung Halle Netz GmbH-Firmenlogo
Fachingenieur Netzbetrieb Strom (m/w/d) Energieversorgung Halle Netz GmbH
Halle (Saale) Zum Job 
über ifp | Executive Search. Management Diagnostik.-Firmenlogo
COO (m/w/d) über ifp | Executive Search. Management Diagnostik.
Norddeutschland Zum Job 
Hamburger Wasser-Firmenlogo
Ingenieur/Referent (m/w/d) Vergabe Ingenieur-/ Bauleistungen Hamburger Wasser
Hamburg Zum Job 
Möller Medical GmbH-Firmenlogo
Industrial Engineer (m/w/d) Möller Medical GmbH
THU Technische Hochschule Ulm-Firmenlogo
W2-Professur "Elektrifizierte Fahrzeugantriebssysteme" THU Technische Hochschule Ulm
MÜNZING CHEMIE GmbH-Firmenlogo
Prozessoptimierer (m/w/d) für die chemische Industrie MÜNZING CHEMIE GmbH
Elsteraue Zum Job 
Energieversorgung Halle Netz GmbH-Firmenlogo
Projektingenieur - Fernwärme/Energietechnik (m/w/d) Energieversorgung Halle Netz GmbH
Halle (Saale) Zum Job 

Das neue Aachener Bestimmungsverfahren kommt vom Institut für Maschinentechnik der Rohstoffindustrie (IMR) der RWTH Aachen, dem Aachener Fraunhofer-Institut für Lasertechnik und mehreren Industriepartnern. Das System wird direkt an Sprengloch-Bohrgeräte angebaut und bringt so den Bohr- und Analysevorgang auf dem Gerät zeitlich und räumlich näher zusammen.

„Es besteht aus einem kompakten Demonstrator, der Materialanalysen mittels Laser-Emissionsspektroskopie durchführt“, erläutert Marina Gaastra, die als wissenschaftliche Mitarbeiterin am IMR das Projekt betreut. „Das Ofur-Analysegerät erlaubt die qualitative und quantitative Onlineanalyse abgebauter Wert-Mineralien in Echtzeit, wodurch das System eine permanente Qualitätskontrolle und Aktualisierung von Lagerstättenmodellen realisiert.“

Bei der Konstruktion des kompakten Analysators für den Einsatz im Kalksteintagebau bestand das Hauptziel des Forschungsvorhabens in der Anpassung der Technologie an bergbauliche Anwendungen und raue Umgebungsbedingungen. Dazu wurde der Demonstrator während der Entwicklungsphase im Labor und im Feldeinsatz getestet, um zukünftig als kompaktes Analysegerät in Bohrgeräte für den Dauereinsatz integriert werden zu können.

Die Laser-Emissionsspektroskopie, kurz LIBS (von engl: Laser In-
duced Breakdown Spectroscopy), ist ein berührungsloses Verfahren zur schnellen Elementanalyse. Es wird in zahlreichen industriellen Anwendungen eingesetzt wie in der Umweltüberwachung und der Qualitätssicherung.

„Mit LIBS lassen sich feste, flüssige und gasförmige Proben ohne Probenvorbereitung analysieren“, führt Gaastra aus. „Die Analyse mehrerer Elemente erfolgt dabei simultan. Zusätzlich sind alle Elemente des Periodensystems innerhalb von Millisekunden detektierbar, was die Vorteile von LIBS gegenüber gewöhnlichen Untersuchungsmethoden wie der Röntgenfluoreszenzanalyse verdeutlicht. Vor allem können im Gegensatz zu anderen Analyseverfahren auch leichte Elemente mit laser-
induzierter Plasmaspektroskopie identifiziert werden.“

Bei einer LIBS-Analyse verdampft ein fokussierter Laserstrahl wenige Mikrogramm Material von der Oberfläche der Probe und heizt den Dampf auf eine Temperatur von 10 000 K bis 25 000 K auf, wodurch ein Plasma entsteht. In diesem Prozess werden die Moleküle des zu analysierenden Materials in einzelne Atome zerlegt.

Das Plasma kühlt sich innerhalb weniger Mikrosekunden ab, und die Atome kehren in ihren Grundzustand zurück. Dabei emittieren sie Licht mit Wellenlängen, die für das chemische Element charakteristisch sind. Optische Linsen fangen das abgestrahlte Licht auf und führen es über Lichtwellenleiter in ein Spektrometer. Dort wird das Licht zerlegt und von einer CCD-Kamera erfasst. Aus den Daten des Spektrometers werden die Elementgehalte bestimmt.

„Die Ergebnisse der Analyse liegen dabei in Form von Intensitätsspektren vor. Jedes Spektrum beinhaltet Peaks bei bestimmten Wellenlängen mit verschieden hohen Intensitäten“, erklärt Gaastra. Die Wellenlänge, bei der ein Peak auftritt, ist für jedes chemische Element einzigartig. So lässt sich bestimmen, welche Elemente vertreten sind. „Die quantitative Analyse erfolgt anschließend, nach vorausgegangener Kalibrierung, in Abhängigkeit von der Intensität des jeweiligen Peaks.“

Die Forscherin wies in einem Kalksteintagebau die Anwendbarkeit der Technologie für den Bergbau nach. Während des Bohrprozesses im Steinbruch fördern die Luftspülung und die Staubabsaugung des Bohrgerätes das gelöste Gestein und Staub an die Oberfläche. Die Analyse des Bohrkleins erfolgt gleichzeitig kontinuierlich durch eine Öffnung im Ansaugschlauch des Bohrgerätes.

IMR-Leiter Karl Nienhaus ist überzeugt, dass das Ofur-Gerät neue Möglichkeiten bei der Echtzeitanalyse mineralischer Rohstoffe eröffnet. „Neben der gegenwärtig entwickelten Einsatzmöglichkeit an Bohrgeräten bietet sich durch die Vielseitigkeit der verwendeten Analysemethode ein enormes Potenzial zur weiteren Verwendung.“ Langfristig könne der Einsatzbereich auf zusätzliche Gebiete mit ähnlich rauen Umgebungsbedingungen erweitert werden.

Nienhaus zufolge lässt sich die Analysesoftware von Ofur durch Änderung der Auswertealgorithmen an andere mineralische Rohstoffe anpassen. Er denkt dabei an die Verwendung des Systems auf Walzenladern im Steinkohlebergbau. „Die Analyse kann hierbei zu einer Unterscheidung von Kohle und Nebengestein beitragen. Des Weiteren wären Einsätze in Salzbergwerken oder bei der Analyse von Erzen denkbar“, sagt Nienhaus. ECKART PASCHE

 

Ein Beitrag von:

  • Eckart Pasche

    Freier Fachjournalist. Themenschwerpunkte: Energie, Kerntechnik, Rohstoffe, Bergbau, Tunnelbau, Technikgeschichte

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.