PLATINARME KATALYSATOREN 12.01.2015, 10:23 Uhr

Längere Lebensdauer: Brennstoffzellen werden bald billiger

90 Prozent des Edelmetalls in herkömmlichen Katalysatoren  lassen sich mit neuartigen platinarmen Nanokatalysatoren einsparen. Jetzt wollen Forscher in Jülich und Berlin diesen innovativen Nanopartikeln die letzte Unart austreiben und ihre Lebensdauer deutlich verlängern. Dazu haben sie mit Hilfe eines extrem starken Elektronenmikroskops die Entstehung der Partikel beobachtet.

Das Elektroenmikroskop PICO erreicht eine Rekordauflösung von 50 Milliardstel Millimetern und ermöglicht Anwendern aus Wissenschaft und Industrie, atomare Strukturen in größtmöglicher Genauigkeit zu untersuchen. Es wurde jetzt auch eingesetzt, um neue Erkenntnisse zu gewinnen, mit denen sich die Lebensdauer neuartiger platinarmer Nanokatalysatoren verbessern lässt.

Das Elektroenmikroskop PICO erreicht eine Rekordauflösung von 50 Milliardstel Millimetern und ermöglicht Anwendern aus Wissenschaft und Industrie, atomare Strukturen in größtmöglicher Genauigkeit zu untersuchen. Es wurde jetzt auch eingesetzt, um neue Erkenntnisse zu gewinnen, mit denen sich die Lebensdauer neuartiger platinarmer Nanokatalysatoren verbessern lässt.

Foto: Forschungszentrum Jülich

Brennstoffzellen sind eher was für Liebhaber. Sie sind einfach zu teuer. Dabei sind sie ideal als Stromspender in Elektroautos und als Kleinkraftwerk im Keller. Forscher in Jülich und Berlin haben jetzt einen Weg gefunden, die Strom- und Wärmespender deutlich zu verbilligen. Sie entwickelten einen Katalysator, der nur noch ein Zehntel der sonst üblichen Platinmenge enthält.

Top Stellenangebote

Zur Jobbörse
Stadt Stuttgart-Firmenlogo
Projektleiter*in Architektur für öffentliche Bauten (m/w/d) Stadt Stuttgart
Stuttgart Zum Job 
Campana & Schott-Firmenlogo
Consultant Projektmanagement (w/m/d) für Infrastrukturprojekte Campana & Schott
Frankfurt, Berlin, Hamburg, Köln, München, Stuttgart Zum Job 
Campana & Schott-Firmenlogo
Technologiebegeisterte Absolventen (w/m/d) für den Einstieg im Consulting Campana & Schott
Frankfurt, Berlin, Hamburg, Köln, München, Stuttgart Zum Job 
Technische Universität Graz-Firmenlogo
Universitätsprofessur für High-Performance Large-Engine Systems (m/w/d) Technische Universität Graz
Graz (Österreich) Zum Job 
Holzer Firmengruppe-Firmenlogo
System Ingenieur (m/w/d) Holzer Firmengruppe
Rutesheim, Weissach Zum Job 
Fachhochschule Nordwestschweiz FHNW-Firmenlogo
Research Associate Polymer Chemistry (m/f/d) Fachhochschule Nordwestschweiz FHNW
Windisch (Schweiz) Zum Job 
WESGO Ceramics GmbH-Firmenlogo
Lean Manager (m/w/d) WESGO Ceramics GmbH
Erlangen Zum Job 
Delphin Technology AG-Firmenlogo
Technical Sales Manager (m/w/d) Delphin Technology AG
Bergisch Gladbach Zum Job 
BAUER GasTec GmbH-Firmenlogo
Projektleiter (m/w/d) für Wasserstoffverdichter BAUER GasTec GmbH
München Zum Job 
Koehler Paper SE-Firmenlogo
Ingenieur Prozesstechnologie (m/w/d) Koehler Paper SE
TIG Automation GmbH-Firmenlogo
Betriebswirt / Wirtschaftsingenieur (m/w/d) Unternehmensabläufe & Strategie TIG Automation GmbH
Hamburg Zum Job 
SFS Group Germany GmbH-Firmenlogo
Techniker / Anwendungstechniker im Innendienst (m/w/d) SFS Group Germany GmbH
Oberursel Zum Job 
Allbau Managementgesellschaft mbH-Firmenlogo
Bauprojektleitung (m/w/d) "Technische Projekte" Allbau Managementgesellschaft mbH
Berliner Wasserbetriebe-Firmenlogo
Vorstandsreferent:in (w/m/d) Berliner Wasserbetriebe
VEM motors GmbH-Firmenlogo
Konstrukteur (m/w/d) VEM motors GmbH
Wernigerode Zum Job 
Leipziger Wohnungs- und Baugesellschaft mbH-Firmenlogo
Projektleiter Haustechnik (w/m/d) Fachingenieur Heizung / Lüftung / Sanitär (w/m/d) Schwerpunkt Trinkwasserhygiene Leipziger Wohnungs- und Baugesellschaft mbH
Leipzig Zum Job 
Leipziger Wohnungs- und Baugesellschaft mbH-Firmenlogo
Projektleiter Haustechnik (w/m/d) Fachingenieur Heizung/Lüftung/Sanitär Leipziger Wohnungs- und Baugesellschaft mbH
Leipzig Zum Job 
BG ETEM-Firmenlogo
Dozenten/-innen (m/w/d) BG ETEM
Bad Münstereifel Zum Job 
Nikola Iveco Europe GmbH-Firmenlogo
Ingenieur (m/w/d) Bordnetzentwicklung und -freigabe Batterie- und Brennstoffzellen-Elektrofahrzeuge Nikola Iveco Europe GmbH
von Hoerner & Sulger GmbH-Firmenlogo
Ingenieure Elektrotechnik (m/w/d) Elektronik-Entwicklung für die Raumfahrt von Hoerner & Sulger GmbH
Schwetzingen Zum Job 

Er ist im wesentlichen aus Nickel- oder Kobaltatomen aufgebaut. Dazwischen finden sich vereinzelt Platinatome. Die Katalysatorpartikel haben die Form von zwei Pyramiden, die mit den Grundflächen aneinander kleben. Fürs Auge sind sie nicht zu sehen, denn sie sind zehntausend Mal kleiner als der Durchmesser eines menschlichen Haars. Katalysatoren haben in Brennstoffzellen die Aufgabe, Wasser- und Sauerstoffatome zu zwingen, sich zu Wasser zu vereinigen. Dabei entstehen Strom und Wärme.

Livesendung vom Aufbau des Katalysators

Nur einen Nachteil haben die neuartigen Katalysatoren: Ihre Lebensdauer ist zu kurz. Jetzt besteht die Chance, das zu ändern und vielleicht sogar die Effektivität zu verbessern. Mit Hilfe von PICO, einem der weltweit stärksten Elektronenmikroskope, haben Wissenschaftler am Forschungszentrum Jülich live miterleben können, wie sich die Doppelpyramiden aufbauen.

Berliner und Jülicher Forscher konnten mithilfe ultrahochauflösender Elektronenmikroskopie zeigen, dass das kristalline Wachstum von neuartigen Katalysatorpartikeln für Brennstoffzellen in mehreren Stufen verläuft. Zunächst bildet sich ein kugelförmiges Gebilde (links), daraus wächst ein so genannter „Hexapod“ (Mitte), der vorwiegend aus Platinatomen (rot) besteht, und in der letzten Phase des Wachstums lagern sich bevorzugt Nickelatome (grün) in den Hohlräumen zwischen den sechs Armen an und komplettieren die Oktaederform (rechts). Am Ende sind die Nickel- und Platinatome nicht gleichmäßig im Katalysatorpartikel verteilt.

Berliner und Jülicher Forscher konnten mithilfe ultrahochauflösender Elektronenmikroskopie zeigen, dass das kristalline Wachstum von neuartigen Katalysatorpartikeln für Brennstoffzellen in mehreren Stufen verläuft. Zunächst bildet sich ein kugelförmiges Gebilde (links), daraus wächst ein so genannter „Hexapod“ (Mitte), der vorwiegend aus Platinatomen (rot) besteht, und in der letzten Phase des Wachstums lagern sich bevorzugt Nickelatome (grün) in den Hohlräumen zwischen den sechs Armen an und komplettieren die Oktaederform (rechts). Am Ende sind die Nickel- und Platinatome nicht gleichmäßig im Katalysatorpartikel verteilt.

Quelle: Forschungszentrum Jülich/TU Berlin

Sie schickten während der Entstehung des Katalysatormoleküls immer wieder einen extrem feinen Elektronenstrahl durch die Probe. Die Nickel-, Kobalt- und Platinatome absorbierten einen Teil der Energie der Elektronen, und zwar in unterschiedlichem Maße. Damit ließen sich die Atome identifizieren und lokalisieren.

Der Aufbau beginnt mit der Bildung einer kleinen Kugel, die Platinatome einfängt und wie ein Fliegenfänger an sich bindet. Im Verlauf von einigen Stunden entsteht ein kreuzförmiges Gebilde. In den Lücken dieses Gerüsts setzen sich schließlich Nickel- oder Kobaltatome fest – die Doppelpyramide ist fertig.

Form und Verteilung sind entscheidend

„Die Wahl der geometrischen Form der Katalysatorpartikel ist für die Optimierung ihrer Funktion ebenso wichtig wie die Wahl ihrer Zusammensetzung und ihrer Größe“, sagt Peter Strasser, Chemieprofessor an der Technischen Universität Berlin. Und Marc Heggen vom Jülicher Ernst Ruska-Centrum, das Pico betreibt, hat festgestellt, dass „Aktivität und Stabilität der Partikel entscheidend davon abhängen, wie die Elemente im Katalysatormaterial verteilt sind.“ Schon eine einzelne atomare Lage könne einen großen Unterschied bewirken.

Ein Beitrag von:

  • Wolfgang Kempkens

    Wolfgang Kempkens studierte an der RWTH Aachen Elektrotechnik und schloss mit dem Diplom ab. Er arbeitete bei einer Tageszeitung und einem Magazin, ehe er sich als freier Journalist etablierte. Er beschäftigt sich vor allem mit Umwelt-, Energie- und Technikthemen.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.