Solarzellen optimiert 28.06.2016, 08:14 Uhr

Darum sind Solarzellen nach dem Vorbild der Rose effizienter

Rosen sehen nicht nur unglaublich gut aus, sie sind auch Meister darin, Sonnenlicht optimal zu nutzen. KIT-Forscher haben die Mikrostrukturen der Blüten studiert und nach deren Vorbild eine organische Solarzelle konstruiert. Dieser simple bionische Trick funktioniert – die Solarzelle produziert mehr Strom. Warum?

Rosenblütenblätter sind optimal darauf ausgerichtet, die Energie der Sonne einzufangen. Eine spezielle dicht gedrängte ungeordnete Mikrostruktur in den Blättern sorgt für eine hervorragende Antireflexwirkung und damit für eine gute Lichtausbeute auch bei wechselnden Lichtverhältnissen. Ingenieure den Karlsruher Instituts für Technologie haben nach dem Vorbild der Rose eine optimierte Solarzelle entwickelt.

Rosenblütenblätter sind optimal darauf ausgerichtet, die Energie der Sonne einzufangen. Eine spezielle dicht gedrängte ungeordnete Mikrostruktur in den Blättern sorgt für eine hervorragende Antireflexwirkung und damit für eine gute Lichtausbeute auch bei wechselnden Lichtverhältnissen. Ingenieure den Karlsruher Instituts für Technologie haben nach dem Vorbild der Rose eine optimierte Solarzelle entwickelt.

Foto: Detlef Stoller

Es ist ein prachtvoller Anblick, wenn die Blüten der Königin des Gartens in allen Schattierungen von dunkelrot bis zartrosa in der Sonne leuchten. Viele Menschen erfreuen sich an den intensiven Farben der Rosenblüten im Sommer. Dabei leuchten diese nicht aus Selbstzweck so schön, sondern weil die starken Farbkontraste die Chancen auf Bestäubung durch Insekten erhöhen.

Photovoltaik ähnelt der Photosynthese

Nun haben sich Photovoltaik-Forscher des Karlsruher Instituts für Technologie (KIT) der zarten Rose angenähert und untersucht, wie die Gartenkönigin diese Farbkontraste erzeugt. Ausgangspunkt war der Gedanke, dass die Photovoltaik der von Pflanzen betriebenen Photosynthese ähnelt. Auch bei der Photosynthese wird Lichtenergie absorbiert und in eine andere Energieform überführt.

Top Stellenangebote

Zur Jobbörse
infraSignal GmbH-Firmenlogo
Projektleiter Steuerkabel (m/w/d) infraSignal GmbH
Die Autobahn GmbH des Bundes-Firmenlogo
Projektingenieur im Brückenbau für Neubau-, Ausbau- und Erhaltungsmaßnahmen (w/m/d) Die Autobahn GmbH des Bundes
Regensburg Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Abteilungsleiter (w/m/d) Konstruktiver Ingenieurbau, Lärmschutzbauwerke Die Autobahn GmbH des Bundes
Nürnberg Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur (w/m/d) für die Projektleitung von Brücken und Ingenieurbauwerke Die Autobahn GmbH des Bundes
Nürnberg Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur als Projektleiter (w/m/d) Planung Die Autobahn GmbH des Bundes
PFINDER KG-Firmenlogo
Produktentwickler (m/w/d) Zerstörungsfreie Werkstoffprüfung PFINDER KG
Böblingen Zum Job 
Hitzler Ingenieur e.K.-Firmenlogo
Projektleiter im Bau-Projektmanagement (m/w/d) Hitzler Ingenieur e.K.
Düsseldorf Zum Job 
Hamamatsu Photonics Deutschland GmbH-Firmenlogo
Master / Diplom in Physik oder Elektrotechnik als Vertriebsingenieur/in für Bereich Analytical (m/w/d) Hamamatsu Photonics Deutschland GmbH
Herrsching am Ammersee Zum Job 
WTM ENGINEERS GMBH-Firmenlogo
BIM-Modeler (m/w/d) für den Bereich Ingenieurwasserbau WTM ENGINEERS GMBH
Hamburg, Kiel, Rostock Zum Job 
Berliner Wasserbetriebe-Firmenlogo
Bauingenieur:in Maßnahmenentwicklung Netze (w/m/d) Berliner Wasserbetriebe
Ministerium für Wirtschaft, Verkehr, Arbeit, Technologie und Tourismus-Firmenlogo
Referentin/Referent (m/w/d) im Referat "Straßenbau" Ministerium für Wirtschaft, Verkehr, Arbeit, Technologie und Tourismus
Hamburger Hochbahn AG-Firmenlogo
Techniker / Ingenieur Elektrotechnik Wartung / Instandhaltung (w/m/d) Hamburger Hochbahn AG
Hamburg Zum Job 
Städtisches Klinikum Dresden-Firmenlogo
Ingenieur (m/w/d) Technische Gebäudeausrüstung (TGA) Städtisches Klinikum Dresden
Dresden Zum Job 
Mercer Stendal GmbH-Firmenlogo
Betriebsingenieur Mechanik (m/w/d) Mercer Stendal GmbH
Arneburg Zum Job 
Rohde & Schwarz Österreich GesmbH-Firmenlogo
Softwareentwickler (m/w/d) Embedded Systems Rohde & Schwarz Österreich GesmbH
Singapur, Stuttgart, Berlin, München Zum Job 
Carl Zeiss Meditec AG-Firmenlogo
Applikationsingenieur (m/w/x) Carl Zeiss Meditec AG
Carl ZEISS MultiSEM-Firmenlogo
Entwicklungsingenieur Elektronik (m/w/x) Carl ZEISS MultiSEM
Oberkochen Zum Job 
Carl Zeiss Meditec AG-Firmenlogo
Process Engineer (m/w/x) Carl Zeiss Meditec AG
Bundesamt für Bauwesen und Raumordnung (BBR)-Firmenlogo
Ingenieurinnen und Ingenieure (w/m/d) in den Fachrichtungen Elektro- bzw. Nachrichtentechnik Bundesamt für Bauwesen und Raumordnung (BBR)
Bundesamt für Bauwesen und Raumordnung (BBR)-Firmenlogo
Ingenieurinnen und Ingenieure (w/m/d) in den Fachrichtungen Versorgungstechnik und Gebäudeautomation Bundesamt für Bauwesen und Raumordnung (BBR)

Für die Pflanzen ist es enorm wichtig, das Lichtspektrum der Sonne möglichst breit zu nutzen und das Licht aus verschiedenen Einfallswinkel aufzunehmen. Denn die Sonne bewegt sich im Tagesverlauf von Osten nach Westen. In ihrer langen Evolutionsgeschichte haben die Pflanzen gelernt, dieses unterschiedliche Lichtangebot optimal aufzunehmen.

Rosenblütenblätter als Vorbild für Solartechnik

Es ist das Abschlussgewebe von Blättern höherer Pflanzen, Epidermis genannt, dem es gelingt, das Licht aus allen einfallenden Winkeln optimal einzufangen. Das haben die Forscher am KIT  in Gemeinschaft mit anderen Forschungsinstituten herausgefunden, indem sie die epidermalen Zellen verschiedener Pflanzenarten auf ihre optischen Eigenschaften und auf ihre Antireflexwirkung untersucht haben.

Ingenieure des KIT haben die Epidermis eines Rosenblütenblatts in einer transparenten Schicht nachgebildet. Diese Schicht wird dann in die Vorderseite einer Solarzelle integriert. Sofort ist diese präparierte Solarzelle bei senkrechtem Lichteinfall zwölf Prozent effektiver.

Ingenieure des KIT haben die Epidermis eines Rosenblütenblatts in einer transparenten Schicht nachgebildet. Diese Schicht wird dann in die Vorderseite einer Solarzelle integriert. Sofort ist diese präparierte Solarzelle bei senkrechtem Lichteinfall zwölf Prozent effektiver.

Quelle: Guillaume Gomard/KIT

Und bei dieser Untersuchung waren die Rosenblütenblätter klarer Favorit. Unter dem Elektronenmikroskop zeigte sich, das die Epidermis der Blätter einer Rosenblüte aus einem ungeordneten Feld dicht gedrängter Mikrostrukturen besteht, das zusätzlich gerippt ist durch zufällig platzierte Nanostrukturen.

Polymer auf Siliziumbasis als Negativ

Um diese Struktur zu reproduzieren, übertrugen die Forscher sie in eine Form aus Polydimethylsiloxan. Dieses Negativ drückten sie in einen optischen Kleber hinein, den sie unter UV-Licht aushärteten.

„Diese Methode ist einfach und kostengünstig und erzeugt Mikrostrukturen von einer Tiefe und Dichte, wie sie sich mit künstlichen Techniken kaum erreichen lassen“, berichtet Dr. Guillaume Gomard, Leiter der Gruppe Nanophotonik am Lichttechnischen Institut (LTI) des KIT. Die so hergestellte transparente Nachbildung der Rosenblütenblätter-Epidermis integrierten die Wissenschaftler in eine organische Solarzelle.

Zwölf Prozent effektiver bei senkrechtem Lichteinfall

Schlagartig erhöhte sich die Energieumwandlungseffizienz bei senkrechtem Lichteinfall um zwölf Prozent. Bei sehr flachen Einfallswinkeln war die Steigerung der Effizienz noch größer. Vor allem die hervorragende richtungsabhängige Antireflexwirkung der nachgebauten Epidermis ist für diese Effizienzsteigerung verantwortlich. Diese ist in der Lage, die Oberflächenreflexion unter fünf Prozent zu halten, selbst bei extrem flachen Lichteinfallswinkel von fast 80 Grad.

Eine Schneewittchen-Rose im Garten unseres Autors Detlef Stoller: Die Blütenblätter der Rose sind so optimal aufgebaut, dass sie das Sonnenlicht auch aus verschiedenen Richtungen optimal nutzen können. 

Eine Schneewittchen-Rose im Garten unseres Autors Detlef Stoller: Die Blütenblätter der Rose sind so optimal aufgebaut, dass sie das Sonnenlicht auch aus verschiedenen Richtungen optimal nutzen können.

Quelle: Detlef Stoller

Zellen fungieren als Mikrolinse

Dazu gesellt sich ein weiterer Effekt: Jede einzelne der nachgebildeten epidermischen Zellen fungiert als Mikrolinse. Das zeigten Untersuchungen mit einem Konfokal-Lasermikroskop. Durch diesen Mikrolinseneffekt verlängert sich der Weg des Lichts innerhalb der Solarzelle und erhöht die Wahrscheinlichkeit, dass Lichtteilchen absorbiert werden.

„Unsere Methode lässt sich sowohl auf weiter Pflanzenarten als auch auf andere Photovoltaiktechnologien anwenden“, erklärt Guillaume Gomard. „Da die Oberflächen von Pflanzen multifunktional sind, könnte es künftig möglich sein, von ihnen mehre Eigenschaften in einem Schritt zu übernehmen.“ Der Forscherverbund hat seine Erkenntnisse jetzt in der Zeitschrift Advanced Opticals Materials publiziert.

Auf die Rose abgesehen haben es auch schwedische Forscher. Sie haben in den winzigen Versorgungskanälen der Rose die wichtigsten Bauteile elektronischer Schaltkreise installiert. Sogar zum Leuchten bringen die Forscher ihre Rosen. Wofür? Sie wollen die Energie der Photosynthese nutzen und einmal direkt Strom in „Energiepflanzen“ erzeugen.

 

Ein Beitrag von:

  • Detlef Stoller

    Detlef Stoller ist Diplom-Photoingenieur. Er ist Fachjournalist für Umweltfragen und schreibt für verschiedene Printmagazine, Online-Medien und TV-Formate.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.