Präziserer Blick auf die Erde 28.09.2023, 12:19 Uhr

Mikrotechnik aus Dresden revolutioniert die Erdbeobachtung aus dem Weltraum

Waldbrände, Erwärmung der Ozeane: Der Blick aus dem Weltall auf die Erde wird immer wichtiger, um die vielfältigen Klimaveränderungen zu beobachten. Mit Mikrotechnik aus Dresden soll die Erdbeobachtung sehr viel präziser werden.

Satellit Erdbeobachtung

Satelliten für die Erdbeobachtung sollen mit Hilfe von Mikrotechnik des Fraunhofer IPMS wesentlich präziser werden.

Foto: Panthermedia.net/cookelma

Die Erdbeobachtung aus dem Weltall gibt uns detaillierte Einblicke in das Geschehen auf der Erde und hat durch präzisere Wettervorhersagen einen direkten Einfluss auf unseren Alltag. Sie fungiert also als eine Art „Superdetektiv“. Im von der EU geförderten Projekt SURPRISE hat ein Expertenteam Möglichkeiten erforscht, um Erdbeobachtungssatelliten sowohl intelligenter als auch sicherer zu gestalten. Dank der Integration von zwei innovativen Technologien, den Flächenlichtmodulatoren und dem „Compressive Sensing“, konnte das Projektteam einen Demonstrator für superspektrale Erdbeobachtung schaffen. Dieser zeichnet sich durch eine erhöhte räumliche Auflösung, On-Board-Datenverarbeitung und Verschlüsselungsfunktionalität aus.

Darum ging es in dem Projekt

Um unser Verständnis für den Planeten zu vertiefen und ökologische sowie soziale Herausforderungen zu bewältigen, wird die Erdbeobachtung immer wichtiger. Allerdings gibt es gegenwärtig Schwierigkeiten bei der Erfassung und Verarbeitung von Weltraumdaten. Beispielsweise kann es Tage dauern, bis Informationen verfügbar sind. Außerdem liefern die Bilder oft nur grobe Details mit einer Auflösung von etwa einem Kilometer, und die Erfassung des unsichtbaren Lichtspektrums gestaltet sich mit aktuellen Technologien als komplex.

Top Stellenangebote

Zur Jobbörse
GASCADE Gastransport GmbH-Firmenlogo
Ingenieur mit Schwerpunkt Maschinenbau / Elektrotechnik / Verfahrenstechnik - als Referent Gasdisposition (m/w/d) GASCADE Gastransport GmbH
Jakob Mooser GmbH / Mooser EMC Technik GmbH-Firmenlogo
Prüfingenieur / Prüftechniker (m/w/d) Jakob Mooser GmbH / Mooser EMC Technik GmbH
Bunge Deutschland GmbH-Firmenlogo
Projektingenieur (m/w/d) Bunge Deutschland GmbH
Mannheim Zum Job 
Berliner Wasserbetriebe-Firmenlogo
Facheinkäufer:in (w/m/d) Berliner Wasserbetriebe
Berliner Wasserbetriebe-Firmenlogo
Facheinkäufer:in (w/m/d) Berliner Wasserbetriebe
OSRAM GmbH-Firmenlogo
Head of Strategy & Marketing - Entertainment & Industry Lamps (ENI) (d/m/f) OSRAM GmbH
München Zum Job 
ams Sensors Germany GmbH-Firmenlogo
Product Manager Automotive - Driver IC (d/m/f) ams Sensors Germany GmbH
Garching bei München Zum Job 
ARRK Engineering GmbH-Firmenlogo
IT Consultant Digitalisierung / Webentwicklung (m/w/d) ARRK Engineering GmbH
München Zum Job 
OSRAM GmbH-Firmenlogo
Key Account Manager*in (d/m/w) OSRAM GmbH
München Zum Job 
TÜV Technische Überwachung Hessen GmbH-Firmenlogo
Ausbildung zum Prüfingenieur bzw. Sachverständigen (m/w/d) für den Tätigkeitsbereich Fahrzeugprüfung und Fahrerlaubnisprüfung TÜV Technische Überwachung Hessen GmbH
Frankfurt am Main Zum Job 
ARRK Engineering GmbH-Firmenlogo
Analyst im Bereich Fahrerassistenz / Autonomes Fahren (m/w/d) ARRK Engineering GmbH
München Zum Job 
ALTEN GmbH-Firmenlogo
Engineer semiconductor technology (all gender) ALTEN GmbH
München Zum Job 
ARRK Engineering GmbH-Firmenlogo
Technisches Projektmanagement - Entwicklung von automotive Anzeigesystemen (m/w/d) ARRK Engineering GmbH
München Zum Job 
ALTEN GmbH-Firmenlogo
Embedded Softwareentwickler Automotive (all gender) ALTEN GmbH
München Zum Job 
ALTEN GmbH-Firmenlogo
Requirements Engineer Automotive (all gender) ALTEN GmbH
München Zum Job 
Poppe + Potthoff Präzisionsstahlrohre GmbH-Firmenlogo
Projektingenieur (m/w/d) Produkt- und Prozessoptimierung Poppe + Potthoff Präzisionsstahlrohre GmbH
Werther (Westfalen) Zum Job 
Mynaric-Firmenlogo
Production Manager (m/w/x) Mynaric
Gilching Zum Job 
Swoboda Schorndorf KG-Firmenlogo
(Senior) Entwicklungsingenieur (m/w/d) für Sensorik Swoboda Schorndorf KG
Schorndorf Zum Job 
Swoboda Schorndorf KG-Firmenlogo
Techniker / Ingenieur Qualitätsvorausplanung AQP (m/w/d) Swoboda Schorndorf KG
Schorndorf Zum Job 
Swoboda Schorndorf KG-Firmenlogo
Commodity Manager - Molded Parts (m/w/d) Swoboda Schorndorf KG
Schorndorf Zum Job 

Hier sorgen neue optische Systeme, wie zum Beispiel Flächenlichtmodulatoren für Abhilfe. Diese Technologie, entwickelt und getestet im EU-Projekt SURPRISE, ermöglicht präzisere Datenerfassungen aus dem All. Über eine Spanne von dreieinhalb Jahren verband das Projekt Forschungs- und Entwicklungsaktivitäten mit dem Einbeziehen von Interessengruppen und Verbreitungsstrategien, um sicherzustellen, dass die Forschungsergebnisse effektiv genutzt werden.

Das Fraunhofer-Institut für Photonische Mikrosysteme IPMS aus Dresden spielte dank seiner Expertise auf dem Gebiet der Flächenlichtmodulatoren eine Schlüsselrolle im Projekt. Die Hauptverantwortlichkeiten des Instituts umfassten die Erstellung einer Machbarkeitsstudie und einer Entwicklungs-Roadmap für einen erstmalig komplett in Europa entwickelten Flächenmodulator (SLM), der auch im Weltraum einsetzbar ist. Darüber hinaus unterstützte das Fraunhofer IPMS die SURPRISE-Partner bei der Erstellung eines Demonstrators.

Das können Flächenlichtmodulatoren

„Die Flächenlichtmodulatoren des Fraunhofer IPMS bestehen aus Tausenden oder sogar Millionen von einzelnen beweglichen Spiegeln mit einer Größe von jeweils nur wenigen Mikrometern. Die größten Herausforderungen stellten dabei die Weltraumtauglichkeit aller Komponenten sowie die Abdeckung eines breiten Spektralbereichs vom sichtbaren bis zum mittleren Infrarot dar. Darüber hinaus sind eine innovative Datenverarbeitungs- und Verschlüsselungsfunktionalität an Bord erforderlich. Damit werden in Zukunft noch bessere Erdbeobachtungsdaten möglich sein“, beschreibt Sara Francés González, Wissenschaftlerin am Fraunhofer IPMS.

Die Mikrospiegel könnene je nach Anwendungsbedarf gekippt oder vertikal verschoben werden, um spezifische Oberflächenmuster oder Strukturen zu erzeugen. Insbesondere in der optischen Mikrolithographie im ultravioletten Spektralbereich kommen hochauflösende Kippspiegelarrays zum Einsatz, die bis zu 2,2 Millionen dieser Einzelspiegel besitzen. Mit einer Spiegelgröße von 10 μm oder mehr können durch das Kippen dieser Mikrospiegel detaillierte Strukturen mit hoher Bildrate auf Fotoresists übertragen werden. Diese Technologie findet auch in Bereichen wie Halbleiterinspektion, Messtechnik und potenziell beim Laserdruck und Materialbearbeitung Anwendung.

Ein weiteres Anwendungsgebiet von Flächenlichtmodulatoren ist zudem die Holographie. Die Millionen von Mikrospiegeln können das Licht in einer Weise beugen, dass lebensechte 3D-Bilder als räumliche Projektionen erscheinen. Je nach Anwendung können die Anzahl und Größe dieser Spiegel auf dem Chip variieren und individuell angepasst werden, um flächige Muster zu kreieren. Diese Technik erlaubt es beispielsweise, Verkehrszeichen direkt in die Windschutzscheibe von Fahrzeugen zu projizieren und so eine dreidimensionale, holographische Darstellung zu erzeugen.

Spiegelarray eines Flächenlichtmodulators

Spiegelarray eines Flächenlichtmodulators mit einer Million Einzelspiegeln.

Foto: Fraunhofer IPMS

Datenverarbeitung mit der Compressive Sensing-Technologie

Im Rahmen des Projekts kam die fortschrittliche „Compressive Sensing“ (CS)-Technologie zum Einsatz. Diese erlaubt es, ein ausgedehntes Bild mithilfe eines Ein-Pixel-Detektors aufzunehmen. Dies ist besonders für den mittleren Infrarotbereich von Bedeutung, da es hier an passenden 2D-Detektoren mangelt. CS bietet zudem Vorzüge bei der Bearbeitung großer Datenmengen und eine eingebaute Datenverschlüsselung.

Die Technik der komprimierten Abtastung bringt weitere Vorteile mit sich, darunter den reduzierten Bedarf an Sensorequipment, erhebliche Speichereinsparungen, eine gesteigerte Datenübertragungsrate sowie einen minimierten Stromverbrauch. Angesichts dieser Vorteile findet die komprimierte Abtastung Anwendung in einer Vielzahl von Bereichen. In Zukunft könnte sie auch im Weltraum eingesetzt werden, um Daten zu verarbeiten, die mit Flächenlichtmodulatoren erfasst wurden.

Mithilfe von Flächenlichtmodulatoren ist es möglich, variable Bildmuster in hoher Geschwindigkeit zu erstellen. Diese Muster werden mit dem zu beobachtenden Szenario kombiniert und von Ein-Pixel-Detektoren erfasst.

Tests unter Weltraumbedingungen

Im Jahr 2022 bestand ein Flächenmodulator der neuesten Technologiegeneration des Fraunhofer IPMS erfolgreich Tests unter Weltraumbedingungen. Das Bauelement mit einer Größe von 256 x 256 Pixeln wurde intensiv unter Bedingungen von Temperaturen zwischen -40 °C und 80 °C, einem Vakuum von weniger als 10-5 mbar und Vibrationen entlang der X-, Y- und Z-Achsen geprüft. Dabei zeigte sich, dass alle Pixel einwandfrei funktionierten. Diese Testergebnisse, kombiniert mit Simulationsergebnissen, untermauern die Beständigkeit der Flächenlichtmodulatoren des Fraunhofer IPMS. Dies bestärkt die Bemühungen, eine speziell für den Weltraum geeignete SLM-Technologie zu entwickeln.

Dank der Einführung eines Mittelauflösungskonzepts mit nahezu stündlichen Wiederholungen könnten die Ergebnisse des Projekts SURPRISE einen wesentlichen Fortschritt in der Erdbeobachtung darstellen und bestehende Dienste sinnvoll erweitern. Dies gilt insbesondere für die Überwachung von Waldbränden und die Kontrolle der Farbveränderungen der Ozeane.

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.