Dunkle Exzitonen 30.01.2025, 12:14 Uhr

Blick ins Dunkle für bessere Solarzellen, Sensoren und LEDs

Eine neue Technik macht die sogenannten dunklen Exzitonen sichtbar. Diese spielen eine wichtige Rolle bei der Entwicklung effizienterer Solarzellen, LEDs und Sensoren.

Dunkle Exzitonen

Die ultraschnelle Dunkelfeldspektroskopie erlaubt es, sowohl helle (rot) als auch dunkle (blau) Exzitonen zu untersuchen.

Foto: Lukas Kroll

Solarzellen, LEDs und Sensoren könnten bald deutlich effizienter werden. Der Schlüssel dazu liegt in einer kaum sichtbaren physikalischen Eigenschaft: den sogenannten dunklen Exzitonen. Ein internationales Forschungsteam unter Leitung der Universität Göttingen hat eine Methode entwickelt, um diese schwer nachweisbaren Teilchen erstmals gezielt zu beobachten. Die neue Technik könnte zukünftige Halbleiter-Technologien revolutionieren.

Was sind dunkle Exzitonen?

Dunkle Exzitonen sind besondere Ladungsträgerzustände in Halbleitern. Sie entstehen, wenn Licht ein Elektron in einen höheren Energiezustand versetzt. Dabei bleibt eine positive Lücke, das sogenannte Elektronenloch, zurück. Elektron und Loch sind durch eine Kraft miteinander verbunden – die Coulomb-Wechselwirkung. Im Gegensatz zu normalen Exzitonen können dunkle Exzitonen jedoch kein Licht emittieren. Das macht sie unsichtbar für herkömmliche optische Messmethoden.

Schon in den 1960er-Jahren wurde die Existenz von Exzitonen theoretisch vorhergesagt. Doch erst 2020 gelang Forschenden am Okinawa Institute of Science and Technology der direkte experimentelle Nachweis von dunklen Exzitonen in Halbleitern. Sie stellten fest, dass diese unsichtbaren Energieträger sogar häufiger vorkommen als ihre sichtbaren Gegenstücke. Das weckte das Interesse der Wissenschaft, da sich durch ihre gezielte Nutzung Halbleiterbauteile deutlich verbessern lassen könnten.

Stellenangebote im Bereich Elektrotechnik, Elektronik

Elektrotechnik, Elektronik Jobs
Industriepark Nienburg GmbH-Firmenlogo
Ingenieur (m/w/d) Elektrotechnik als Leiter Elektrotechnik & Automation Industriepark Nienburg GmbH
Nienburg Zum Job 
Evonik Operations GmbH-Firmenlogo
EMR-Anlageningenieur (m/w/d) mit Sonderqualifikation Evonik Operations GmbH
Rheinfelden (Baden) Zum Job 
CR3-Kaffeeveredelung M. Hermsen GmbH-Firmenlogo
Projektleiter (m/w/d) Elektrotechnik CR3-Kaffeeveredelung M. Hermsen GmbH
THU Technische Hochschule Ulm-Firmenlogo
Laboringenieur*in (w/m/d) mit Leitungsfunktion am Institut für Automatisierungssysteme THU Technische Hochschule Ulm
Infraserv GmbH & Co. Höchst KG-Firmenlogo
Ingenieur Verfahrenstechnik / Mechatronik für Messstellenbetrieb Erdgas & rohrgebundene Medien (w/m/d) Infraserv GmbH & Co. Höchst KG
Frankfurt am Main Zum Job 
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
TÜV Hessen-Firmenlogo
Sachverständiger Elektrotechnik (m/w/d) TÜV Hessen
Frankfurt am Main Zum Job 
Stuttgart Netze GmbH-Firmenlogo
(Junior) Ingenieur Elektrotechnik Projektierung (w/m/d) Stuttgart Netze GmbH
Stuttgart Zum Job 
Lincoln Electric GmbH-Firmenlogo
Schweißfachingenieur / Schweißtechniker (m/w/d) Lincoln Electric GmbH
Evonik Operations GmbH-Firmenlogo
Ingenieur (m/w/d) Informatik / Elektrotechnik / Automatisierungstechnik / Chemische Produktion Evonik Operations GmbH
VIVAVIS AG-Firmenlogo
Partner-Manager Metering (m/w/d) VIVAVIS AG
Koblenz, Home-Office Zum Job 
VIVAVIS AG-Firmenlogo
Sales Manager Bahn (m/w/d) VIVAVIS AG
Berlin, Home-Office Zum Job 
NVL B.V. & Co. KG-Firmenlogo
Systemingenieur (m/w/d) für Marineschiffe - Integration von Navigationssystemen NVL B.V. & Co. KG
Bremen / Lemwerder Zum Job 
Hochschule Reutlingen-Firmenlogo
Akademische:r Mitarbeiter:in (m/w/x) "SMARTE ASSISTENZSYSTEME" Hochschule Reutlingen
Reutlingen Zum Job 
Stadtwerke Münster-Firmenlogo
Maschinenbauingenieur (m/w/d) im Bereich Energieerzeugung Stadtwerke Münster
Münster Zum Job 
Staatliches Baumanagement Hannover-Firmenlogo
Ingenieure (m/w/d) der Fachrichtung Elektrotechnik Staatliches Baumanagement Hannover
Hannover Zum Job 
Octapharma Produktionsgesellschaft Deutschland mbH-Firmenlogo
Ingenieur (m/w/d) Automatisierung (Schwerpunkt: Prozessleitsystem PCS7) Octapharma Produktionsgesellschaft Deutschland mbH
Springe Zum Job 
Fachhochschule Münster-Firmenlogo
Professur für "Elektrische Netze" (w/m/d) Fachhochschule Münster
Steinfurt Zum Job 
Zweckverband Bodensee-Wasserversorgung-Firmenlogo
Ingenieur (m/w/d) für Automatisierungstechnik SPS / OT-Sicherheit Zweckverband Bodensee-Wasserversorgung
Sipplingen Zum Job 
B. Braun Melsungen AG-Firmenlogo
Senior Prozess Experte (w/m/d) Reinmedien / Einwaage / Ansatz B. Braun Melsungen AG
Melsungen Zum Job 

Neuer Blick auf dunkle Exzitonen

Ein Team um Prof. Dr. Stefan Mathias vom I. Physikalischen Institut der Universität Göttingen hat nun eine neue Methode entwickelt: die ultraschnelle Dunkel-Feld-Impulsmikroskopie. Mit dieser Technik gelang es erstmals, dunkle Exzitonen direkt in einer speziellen Materialstruktur aus Wolframdiselenid (WSe₂) und Molybdändisulfid (MoS₂) zu beobachten.

Die Messungen fanden auf extrem kurzen Zeitskalen statt: Nur 55 Femtosekunden (0,000000000000055 Sekunden) dauert die Entstehung dieser Teilchen. Gleichzeitig erreicht die Methode eine Auflösung von 480 Nanometern – das entspricht etwa der halben Wellenlänge von sichtbarem Licht. Damit ermöglicht sie eine präzisere Analyse von Halbleitermaterialien als je zuvor.

„Mithilfe dieser Methode können wir die Dynamik von Ladungsträgern präzise sichtbar machen“, erklärt Dr. David Schmitt, Erstautor der Studie. „Unsere Ergebnisse zeigen, wie Materialeigenschaften die Bewegung von Ladungsträgern beeinflussen. Damit kann die Technik in Zukunft gezielt zur Optimierung von Solarzellen eingesetzt werden.“

Auswirkungen auf Solarzellen und Halbleitertechnologie

Der praktische Nutzen dieser Entdeckung könnte enorm sein. Da dunkle Exzitonen eine wichtige Rolle bei der Energieverteilung in Halbleitern spielen, könnte ihre gezielte Steuerung die Effizienz von Solarzellen steigern. Bisher geht ein großer Teil der Energie in Form von Abwärme verloren, bevor sie in elektrische Energie umgewandelt werden kann. Die neue Technik könnte helfen, diesen Prozess zu optimieren und den Energieverlust zu minimieren.

Dr. Marcel Reutzel, Nachwuchsgruppenleiter in der Arbeitsgruppe von Mathias, betont: „Unsere Methode ist nicht nur für diese speziellen Systeme relevant, sondern könnte auch für die Erforschung neuer Halbleitermaterialien genutzt werden.“ Das bedeutet, dass auch andere elektronische Bauteile, wie LEDs oder optische Sensoren, von dieser Technik profitieren könnten.

Zukunftsperspektiven

Die Forschungsergebnisse wurden in der renommierten Fachzeitschrift Nature Photonics veröffentlicht und von der Deutschen Forschungsgemeinschaft (DFG) gefördert. Die Erkenntnisse könnten weitreichende Folgen für die Entwicklung neuer Halbleitertechnologien haben. Besonders spannend: Die ultraschnelle Dunkel-Feld-Impulsmikroskopie könnte künftig eine Standardmethode werden, um Materialeigenschaften auf atomarer Ebene zu untersuchen.

Mit dieser neuen Technologie erhalten Forschende einen bisher unerreichten Einblick in die Funktionsweise von Halbleitern. Die Möglichkeiten für effizientere Solarzellen, leistungsfähigere LEDs und empfindlichere Detektoren sind laut Forschungsteam enorm.

Hier geht es zur Originalpublikation

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.