Organische Elektronik 12.03.2019, 07:00 Uhr

Anorganische Elektroden nach Maß – Mit organischer Deckschicht

Leitfähige organische Moleküle verbessern die Eigenschaften von Gold- und Silberelektroden. Das berichten Forscher aus Marburg. Sie zeigen, dass ihre Systeme auch unter Alltagsbedingungen funktionieren.

Gold-Elektrode

Gold-Elektrode (links unbeschichtet, rechts mit einer monomolekularen Schicht Phthalocyanin bedampft). Grafik: Felix Widdascheck

Mit organischen Molekülen lassen sich die Eigenschaften anorganischer Elektroden präzise steuern. Je nach verwendeter Substanz änderte sich die Energie-Barriere von Elektronen beim Übergang vom Metall in den organischen Halbleiter, berichten die Forscher der Universität Marburg. Damit lassen sich maßgeschneiderte Elektroden entwickeln.

Bei der organischen Elektronik arbeiten Forscher mit halbleitenden aromatischen Moleküle, von denen es Tausende Vertreter gibt. Elektrische Leitfähigkeit setzt Ladungsträger voraus. Das sind im Fall von organischen Molekülen konjugierte Doppelbindungen, also C=C-Doppelbindungen mit jeweils einer C-C-Einfachbindung dazwischen. Sie erstrecken sich über das gesamte Molekül. Als eigentliche Ladungsträger fungieren wie bei Halbleitern Defektelektronen, die man durch chemische Dotierung einbringt.

Stellenangebote im Bereich Elektrotechnik, Elektronik

Elektrotechnik, Elektronik Jobs
Safran Data Systems GmbH-Firmenlogo
Testingenieur / Certified Tester (m/w/d) Safran Data Systems GmbH
Bergisch Gladbach Zum Job 
Stadtwerke München GmbH-Firmenlogo
Commissioning Manager Control, Field and Automation Engineering (m/w/d) Stadtwerke München GmbH
München Zum Job 
Hochschule Esslingen-Firmenlogo
Professor:in für das Lehrgebiet "Elektrotechnik und Elektrische Energieversorgung" Hochschule Esslingen
Göppingen, Esslingen Zum Job 
Röhm GmbH-Firmenlogo
Ingenieur (m/w/d) Elektrotechnik / Automatisierungstechnik / EMSR Röhm GmbH
Wesseling Zum Job 
Herrenknecht AG-Firmenlogo
Technischer Redakteur (m/w/d) Herrenknecht AG
Schwanau Zum Job 
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO-Firmenlogo
Wissenschaftliche*r Referent*in der Institutsleiterin Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO
Stuttgart Zum Job 
Technische Hochschule Rosenheim-Firmenlogo
Professorin / Professor (m/w/d) für Applied Embedded Computing Technische Hochschule Rosenheim
Rosenheim Zum Job 
KTR Systems GmbH-Firmenlogo
Berechnungsingenieur (m/w/d) KTR Systems GmbH
Verband der Automobilindustrie e. V. (VDA)-Firmenlogo
Geschäftsführer (m/w/d) VDA QMC in China Verband der Automobilindustrie e. V. (VDA)
Peking, Shanghai (China) Zum Job 
Stuttgart Netze GmbH-Firmenlogo
Ingenieur Baukoordination und Qualitätssicherung (w/m/d) Stuttgart Netze GmbH
Stuttgart Zum Job 
Münchener Rückversicherungs-Gesellschaft Aktiengesellschaft in München-Firmenlogo
Underwriter Downstream / Energy (m/f/d) Münchener Rückversicherungs-Gesellschaft Aktiengesellschaft in München
München Zum Job 
EVH GmbH-Firmenlogo
Referent Elektrotechnik (m/w/d) EVH GmbH
Halle (Saale) Zum Job 
Vermögen und Bau Baden-Württemberg-Firmenlogo
Diplom-Ingenieur / Bachelor (w/m/d) der Fachrichtung Elektrotechnik, Versorgungstechnik, Gebäudeklimatik, Gebäude- und Energietechnik Vermögen und Bau Baden-Württemberg
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur Elektrotechnik für Informationstechnik und -sicherheit (m/w/d) Die Autobahn GmbH des Bundes
München Zum Job 
Keysight Technologies Deutschland GmbH-Firmenlogo
Senior Process and Development Engineer for High Frequency Solutions (m/f/x) Keysight Technologies Deutschland GmbH
Böblingen Zum Job 
Stadtwerke München GmbH-Firmenlogo
Strategische*r Einkäufer*in Anlagenbau (m/w/d) Stadtwerke München GmbH
München Zum Job 
Iventa Austria Personalwerbung GmbH-Firmenlogo
Wind and Site Engineer (m/f/d) Iventa Austria Personalwerbung GmbH
Hamburg Zum Job 
SWM Services GmbH-Firmenlogo
Projektingenieur*in für Prozess- und Automatisierungstechnik MSR (m/w/d) SWM Services GmbH
München Zum Job 
NORD-MICRO GmbH & Co. OHG-Firmenlogo
Service Ingenieur - Fans (m/w/d) NORD-MICRO GmbH & Co. OHG
Frankfurt am Main Zum Job 
DIgSILENT GmbH-Firmenlogo
Ingenieur Elektrotechnik (w/m/d) Power System Modelling DIgSILENT GmbH
Gomaringen Zum Job 

Bei der Kombination mit Metallelektroden gab es vor allem durch den Kontaktwiderstand an der Grenzfläche zwischen Metallelektroden und organischem Halbleiter Schwierigkeiten. Wissenschaftler der Philipps-Universität Marburg lösten die Probleme, indem sie organische Moleküle, sogenannte Phthalocyanine, als monomolekulare Schicht auf einkristalline Gold- und Silber-Elektroden aufbrachten. Trotz der geringen Dicke erwies sich die Schicht als erstaunlich stabil.

Präzise Steuerung der Energiebarriere

Messungen zeigten, welche Potenziale das System hat, indem Forscher zwei Stellschrauben veränderten. Änderten sie die prozentuale Bedeckung ihrer Elektroden mit Phthalocyaninen, konnten sie die Energiebarriere für elektronische Übergänge zwischen dem Metall und dem Halbleiter präzise steuern. Noch stärkeren Einfluss hatten Varianten bei der Chemie. Unterschiedliche Moleküle führten zu unterschiedlich starken Änderungen der Barriere. „Unsere Ergebnisse zeigen, dass mithilfe der richtigen Moleküle und bei sorgfältiger Präparation eine genaue Kontrolle der Grenzfläche zwischen Metall und Halbleiter möglich ist“, sagt Gregor Witte. Der Professor für Festkörperphysik forscht an der Uni und hat das Forschungsprojekt geleitet.

Wie sein Team gezeigt hat, steckt ein großes Potenzial in Phthalocyaninen. Die Molekülklasse wurde erstmals 1907 beschrieben und ab 1928 synthetisiert. 1934 begann die gezielte Produktion von Kupferphthalocyanin als Farbstoff. Über Jahrzehnte hinweg haben Chemiker diverse Synthesemethoden entwickelt. Dazu gehören neben nasschemischen Methoden auch elektrochemische Verfahren. Als weitere Energiequellen kommen Laser, UV-VIS- oder Mikrowellenstrahlung infrage. Dank der gezielten Verfahren gelingt es heute, Hunderte Vertreter der Molekülklasse herzustellen. Konjugierte Doppelbindungen erklären sowohl die Farbigkeit als auch die elektrischen Eigenschaften.

Ergebnisse vom Labor in die reale Welt übertragen 

Ein idealisiertes Modellsystem ist für theoretische Überlegungen wichtig. Die Wissenschaftler stellten sich jedoch die Frage, welche Eigenschaften Systeme unter weniger idealen Bedingungen haben. Das sind beispielsweise polykristalline statt monokristalliner Elektroden. Und Sauerstoff der Luft könnte Ergebnisse aus Messungen im Vakuum verändern. Lassen sich die Moleküle erneut korrekt anordnen, wenn sie durch Lufteinwirkung in Unordnung geraten sind? Denn Elektronik-Bauteile müssen eben auch unter realen Bedingungen funktionieren.

Das Team untersuchte deshalb, ob im Labor gemessene Effekte auch auf polykristallinen Elektroden auftreten. Eine andere Befürchtung war, dass Luft die Ordnung auf Elektrodenoberflächen irreversibel stört. Das war nicht der Fall. Glühten Wissenschaftler ihr System im Vakuum aus, konnten sie die molekulare Ordnung wiederherstellen. Dieser Befund belege, dass der Ansatz auch in einer echten Fertigungsreihe funktionieren könne, erklärt Witte.

Technik mit Potenzial – aber noch offene Fragen

Bei Ingenieuren gilt die organische Elektronik nämlich als Technologie mit großem Potenzial und zwar aus mehreren Gründen. Sie ermöglicht es, preisgünstige Komponenten herzustellen, etwa für Wegwerfprodukte wie RFID-Chips. Außerdem lassen sich mit Polymeren Werkstücke produzieren, die mit klassischen Halbleitern nicht möglich wären. Besonders groß ist das Interesse an Folien. Dem stehen einige Nachteile gegenüber. Aussagen zur Lebensdauer organischer Komponenten lassen sich nicht treffen. Wie lange Daten stabil sind, bleibt ebenfalls offen. Bekannte Probleme mit Elektroden konnten zumindest geklärt werden. Witte: „Unsere Ergebnisse zeigen, dass mithilfe der richtigen Moleküle und bei sorgfältiger Präparation eine genaue Kontrolle der Grenzfläche zwischen Metall und Halbleiter möglich ist.“

Weitere News zu organischer Elektronik:

Ein Beitrag von:

  • Michael van den Heuvel

    Michael van den Heuvel hat Chemie studiert. Unter anderem arbeitet er für Medscape, DocCheck, für die Universität München und für pharmazeutische Fachmagazine. Seit 2017 ist er selbstständiger Journalist und Gesellschafter von Content Qualitäten. Seine Themen: Chemie/physikalische Chemie, Energie, Umwelt, KI, Medizin/Medizintechnik.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.