Energiespeicher

RSS Feeds  | Alle Themen Energiespeicher-Visual-133849407
12.01.2015, 10:23 Uhr | 0 |

PLATINARME KATALYSATOREN Längere Lebensdauer: Brennstoffzellen werden bald billiger

90 Prozent des Edelmetalls in herkömmlichen Katalysatoren  lassen sich mit neuartigen platinarmen Nanokatalysatoren einsparen. Jetzt wollen Forscher in Jülich und Berlin diesen innovativen Nanopartikeln die letzte Unart austreiben und ihre Lebensdauer deutlich verlängern. Dazu haben sie mit Hilfe eines extrem starken Elektronenmikroskops die Entstehung der Partikel beobachtet.

Elektronenmikroskop PICO
Á

Das Elektroenmikroskop PICO erreicht eine Rekordauflösung von 50 Milliardstel Millimetern und ermöglicht Anwendern aus Wissenschaft und Industrie, atomare Strukturen in größtmöglicher Genauigkeit zu untersuchen. Es wurde jetzt auch eingesetzt, um neue Erkenntnisse zu gewinnen, mit denen sich die Lebensdauer neuartiger platinarmer Nanokatalysatoren verbessern lässt.

Foto: Forschungszentrum Jülich

Brennstoffzellen sind eher was für Liebhaber. Sie sind einfach zu teuer. Dabei sind sie ideal als Stromspender in Elektroautos und als Kleinkraftwerk im Keller. Forscher in Jülich und Berlin haben jetzt einen Weg gefunden, die Strom- und Wärmespender deutlich zu verbilligen. Sie entwickelten einen Katalysator, der nur noch ein Zehntel der sonst üblichen Platinmenge enthält.

Er ist im wesentlichen aus Nickel- oder Kobaltatomen aufgebaut. Dazwischen finden sich vereinzelt Platinatome. Die Katalysatorpartikel haben die Form von zwei Pyramiden, die mit den Grundflächen aneinander kleben. Fürs Auge sind sie nicht zu sehen, denn sie sind zehntausend Mal kleiner als der Durchmesser eines menschlichen Haars. Katalysatoren haben in Brennstoffzellen die Aufgabe, Wasser- und Sauerstoffatome zu zwingen, sich zu Wasser zu vereinigen. Dabei entstehen Strom und Wärme.

Livesendung vom Aufbau des Katalysators

Nur einen Nachteil haben die neuartigen Katalysatoren: Ihre Lebensdauer ist zu kurz. Jetzt besteht die Chance, das zu ändern und vielleicht sogar die Effektivität zu verbessern. Mit Hilfe von PICO, einem der weltweit stärksten Elektronenmikroskope, haben Wissenschaftler am Forschungszentrum Jülich live miterleben können, wie sich die Doppelpyramiden aufbauen.

Sie schickten während der Entstehung des Katalysatormoleküls immer wieder einen extrem feinen Elektronenstrahl durch die Probe. Die Nickel-, Kobalt- und Platinatome absorbierten einen Teil der Energie der Elektronen, und zwar in unterschiedlichem Maße. Damit ließen sich die Atome identifizieren und lokalisieren.

Der Aufbau beginnt mit der Bildung einer kleinen Kugel, die Platinatome einfängt und wie ein Fliegenfänger an sich bindet. Im Verlauf von einigen Stunden entsteht ein kreuzförmiges Gebilde. In den Lücken dieses Gerüsts setzen sich schließlich Nickel- oder Kobaltatome fest – die Doppelpyramide ist fertig.

Form und Verteilung sind entscheidend

„Die Wahl der geometrischen Form der Katalysatorpartikel ist für die Optimierung ihrer Funktion ebenso wichtig wie die Wahl ihrer Zusammensetzung und ihrer Größe", sagt Peter Strasser, Chemieprofessor an der Technischen Universität Berlin. Und Marc Heggen vom Jülicher Ernst Ruska-Centrum, das Pico betreibt, hat festgestellt, dass „Aktivität und Stabilität der Partikel entscheidend davon abhängen, wie die Elemente im Katalysatormaterial verteilt sind.“ Schon eine einzelne atomare Lage könne einen großen Unterschied bewirken.

Anzeige
Von Wolfgang Kempkens
Zur StartseiteZur Startseite
schlagworte: 
kommentare

Aktuell wurden noch keine Kommentare zu diesem Artikel abgegeben. Loggen Sie ich ein oder melden Sie sich neu an, wenn Sie noch keine Zugangsdaten haben
> Zum Login     > Neu anmelden