Medizinische Bildgebung 19.07.2019, 12:00 Uhr

Endoskop am Abstellgleis – dank Ultraschall-Linse

Um Erkrankungen im Körper zu diagnostizieren, arbeiten Ärzte oft mit Endoskopen. Jetzt zeigen Forscher, dass Ultraschall eine gute, für Patienten nicht belastende Alternative ist.

Endoskopie

Endoskopische Untersuchungen sind belastend. Eine neue Technologie könnte viele Untersuchungen überflüssig machen.

Foto: panthermedia.net/Kzenon

Seit knapp 140 Jahren setzen Ärzte Endoskope zur Diagnostik unterschiedlicher Erkrankungen ein. Magen-, Darm oder Lungenspiegelungen haben nichts von ihrer Bedeutung verloren, sind für Patienten aber extrem belastend. Oft arbeiten Mediziner deshalb mit einer kurzen Narkose – inklusive geringer, aber dennoch vorhandener Risiken für Patienten.

Ingenieure der Carnegie Mellon University (CMU) in Pittsburgh, Pennsylvania, haben eine neue Technik entwickelt, um per Ultraschall und Licht Bilder aus tiefer liegenden Schichten des Körpers aufzunehmen. „Optisch trübe Medien wie Gewebe stellten dabei kein Hindernis dar“, schreibt Maysam Chamanzar. Er hat eine Professur für Electrical and Computer Engineering an der CMU.

Mit „virtuellen Linsen“ ins Körperinnere blicken 

Bislang arbeiteten Ärzte mit Lichtleitern, um schwer erreichbare Körperregionen zu untersuchen. Biologische Strukturen absorbieren elektromagnetische Strahlung stark, vor allem im sichtbaren Bereich des Spektrums. Einfach nur Gewebe optisch zu durchstrahlen, funktioniert eben nicht. Das gelingt allenfalls mit dünnen Schnitten im Mikroskop: eine Technik, mit der Pathologen arbeiten.

Chamanzar entwickelte spezielle Wellenmuster aus Ultraschall, um die optische Strahlung im Gewebe zu fokussieren. Elektromagnetische Wellen können das Medium, durch das sie sich bewegen, nämlich temporär verändern. In komprimierten Regionen bewegt sich das Licht langsamer als in normalem Gewebe. „Wir haben Ultraschallwellen eingesetzt, um eine virtuelle optische Übertragungslinse innerhalb eines bestimmten Zielmediums zu formen, bei der es sich beispielsweise um biologisches Gewebe handeln kann“, berichtet der Experte. „Im Experiment wird das Gewebe in eine Linse umgewandelt, mit der wir die Bilder tieferer Strukturen erfassen und übertragen können.“

Scharfstellen per Ultraschall

Die Forscher zeigten, dass sich ihre virtuellen „Linse“ einstellen lässt, indem sie Parameter der Ultraschallwellen ändern. Das Ergebnis:  Ärzte können Bilder „fokussieren“, um Organe in unterschiedlicher Tiefe abzubilden.

Zumindest im Experiment konnte man den Signalgeber so verändern, dass Ultraschallwellen sich durch tiefere Schichten bewegten, ohne Strukturen zu verändern. Das ist wichtig – schließlich sollen diagnostische Verfahren kein Gewebe, das zu untersuchen ist, verändern. Es entstanden Bilder mit einer Präzision, die auf Basis von Ultraschall allein bislang nicht erreicht worden sind.

Anwendungen in der Medizin

Von der Theorie zur Praxis. In Zukunft könnte man Handgeräte zur mobilen Diagnostik konstruieren. Auch ein dickeres Pflaster halten die Entwickler für denkbar, um bestimmte Regionen längerfristig zu überwachen. Besonders naheliegend sind Anwendungen wie die endoskopische Bildgebung von Hirngewebe oder unter der Haut. Diese Technik kann jedoch auch in anderen Körperteilen eingesetzt werden.

Bis zur Serienreife würden wohl noch fünf Jahre vergehen, spekulieren die Entwickler. Im nächsten Schritt soll ein Handgerät für die ärztliche Praxis entstehen. Alternativ hält Chamanzar Hightech-Pflaster für denkbar. Diese müsse man auf bestimmte Körperregionen kleben, je nachdem, welches Organ abzubilden ist. Über die Hardware empfängt der Arzt Signale und wertet am Computer per Software alle Informationen aus, so die Hoffnung. Als großen Vorteil sehen die Forscher, dass – anders als bei der Endoskopie – kontinuierlich Daten erfasst werden.

Anwendung in Forschung und Technik

Über diagnostische Möglichkeiten hinaus könnte die Technik auch eingesetzt werden, um Materialien zerstörungsfrei zu untersuchen, was bislang aber nicht getestet worden ist.

Chamanzar sieht weitere Potenziale in der Grundlagenforschung, um Versuchstiere genauer zu beobachten. Derzeit gibt es beispielsweise Mausmodelle für die Alzheimer- oder die Parkinson-Krankheit. Allerdings lassen sich viele Vorgänge im neuronalen Bereich nicht am lebenden Organismus erforschen. Diese Lücke könnte durch das Verfahren ebenfalls geschlossen werden.

Noch stirbt das Endoskop nicht aus  

Trotz aller möglichen Vorteile werden Endoskope – wenn auch vielleicht seltener – im ärztlichen Alltag weiter benötigt. Häufig müssen Ärzte Proben nehmen oder Tumore mit dem Endoskop entfernen. Dazu versehen sie ihre Geräte mit kleinen Zangen. Im rein diagnostischen Bereich könnte Chamanzars neue Technologie altehrwürdigen Geräten vielleicht den Rang ablaufen.

Mehr zum Thema Medizin

Stellenangebote im Bereich Medizintechnik, Biotechnik

Merck KGaA-Firmenlogo
Merck KGaA EMR-Fachingenieur (m/w/divers) Darmstadt
MED-EL Medical Electronics-Firmenlogo
MED-EL Medical Electronics Process Validation Engineer (m/w) Innsbruck (Österreich)
Hitachi Automotive Systems Europe GmbH-Firmenlogo
Hitachi Automotive Systems Europe GmbH Senior R&D Engineer (m/f/d) Schwaig-Oberding
Takeda GmbH-Firmenlogo
Takeda GmbH Qualifizierungsingenieur – Qualification Engineer (all genders) Oranienburg
IKA-Werke GmbH & Co. KG-Firmenlogo
IKA-Werke GmbH & Co. KG Ingenieur / Techniker (m/w/d) Industrial Engineering Staufen
Freie und Hansestadt Hamburg-Firmenlogo
Freie und Hansestadt Hamburg Sachbearbeiterin bzw. Sachbearbeiter (m/w/d) im Strahlenschutz Hamburg
UROMED Kurt Drews KG-Firmenlogo
UROMED Kurt Drews KG Abteilungsleiter (m/w/d) Regulatory Affairs für Medizinprodukte Oststeinbek
ADMEDES GmbH-Firmenlogo
ADMEDES GmbH Senior Ingenieur (m/w/d) QM / Regulatory Affairs Pforzheim
sepp.med gmbh-Firmenlogo
sepp.med gmbh Validierungsingenieur (m/w/d) Forchheim
INVACARE Deutschland GmbH-Firmenlogo
INVACARE Deutschland GmbH Leiter Qualitätsmanagement (m/w/d) Porta Westfalica

Alle Medizintechnik, Biotechnik Jobs

Top 5 Medizin