Spektroskopie an Atomen 04.07.2014, 08:30 Uhr

Glasfasern mit hohlem Minikern halten selbst UV-Laserlicht stand

Glasfasern mit einem winzigen Kern von 20 Mikrometern Durchmesser halten selbst Laserlicht im ultravioletten Spektralbereich stand. Die Erfindung der Max-Planck-Forscher aus Erlangen soll der Präzisionspektroskopie an Atomen und den Entwicklern der Quantencomputer zugute kommen. 

Mikroskopische Aufnahme der Glasfaser: Die Hohlkammer in der Mitte ist nur 20 Tausendstel Millimeter breit. Sie macht die verlustfreie Übertragung des UV-Laserlichts möglich. 

Mikroskopische Aufnahme der Glasfaser: Die Hohlkammer in der Mitte ist nur 20 Tausendstel Millimeter breit. Sie macht die verlustfreie Übertragung des UV-Laserlichts möglich. 

Foto: PTB

Mit ultraviolettem Laserlicht wollen Physiker indirekt in Ionen, also elektrisch geladene Teilchen, und komplette Atome schauen. Biologen können damit Vorgänge in lebenden Zellen sichtbar machen, Klimaforscher Treibhausgase in der Atmosphäre aufspüren. Dazu müssen sie Photodioden, die das Laserlicht erzeugen, direkt auf die Probe halten.

Übliche Glasfasern funktionieren bislang allerdings nicht als Lichtwellenleiter für den Transport der Lichtteilchen. Der UV-Laserstrahl wird vom Glas verschluckt. Genau die gleiche Wirkung hat beispielsweise Fensterglas. Das UV-Licht der Sonne dringt nicht durch, so dass die Haut nicht gebräunt wird. Während Fensterglas so dick ist, dass die paar Macken, die das UV-Licht hineinschlägt, nicht weiter auffallen, hat Licht mit dieser Frequenz verheerende Folgen für die extrem feinen Lichtwellenleiter. Sie werden innerhalb kurzer Zeit zerstört.

Stellenangebote im Bereich Elektrotechnik, Elektronik

Elektrotechnik, Elektronik Jobs
Safran Data Systems GmbH-Firmenlogo
Testingenieur / Certified Tester (m/w/d) Safran Data Systems GmbH
Bergisch Gladbach Zum Job 
Hochschule Esslingen-Firmenlogo
Professor:in für das Lehrgebiet "Elektrotechnik und Elektrische Energieversorgung" Hochschule Esslingen
Göppingen, Esslingen Zum Job 
Röhm GmbH-Firmenlogo
Ingenieur (m/w/d) Elektrotechnik / Automatisierungstechnik / EMSR Röhm GmbH
Wesseling Zum Job 
Stadtwerke München GmbH-Firmenlogo
Commissioning Manager Control, Field and Automation Engineering (m/w/d) Stadtwerke München GmbH
München Zum Job 
Herrenknecht AG-Firmenlogo
Technischer Redakteur (m/w/d) Herrenknecht AG
Schwanau Zum Job 
Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO-Firmenlogo
Wissenschaftliche*r Referent*in der Institutsleiterin Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO
Stuttgart Zum Job 
KTR Systems GmbH-Firmenlogo
Berechnungsingenieur (m/w/d) KTR Systems GmbH
Technische Hochschule Rosenheim-Firmenlogo
Professorin / Professor (m/w/d) für Applied Embedded Computing Technische Hochschule Rosenheim
Rosenheim Zum Job 
Verband der Automobilindustrie e. V. (VDA)-Firmenlogo
Geschäftsführer (m/w/d) VDA QMC in China Verband der Automobilindustrie e. V. (VDA)
Peking, Shanghai (China) Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Ingenieur Elektrotechnik für Informationstechnik und -sicherheit (m/w/d) Die Autobahn GmbH des Bundes
München Zum Job 
Keysight Technologies Deutschland GmbH-Firmenlogo
Senior Process and Development Engineer for High Frequency Solutions (m/f/x) Keysight Technologies Deutschland GmbH
Böblingen Zum Job 
Ziehm Imaging GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Hardware mit Schwerpunkt Schaltungstechnik Ziehm Imaging GmbH
Nürnberg Zum Job 
Iventa Austria Personalwerbung GmbH-Firmenlogo
Wind and Site Engineer (m/f/d) Iventa Austria Personalwerbung GmbH
Hamburg Zum Job 
Stadtwerke München GmbH-Firmenlogo
Strategische*r Einkäufer*in Anlagenbau (m/w/d) Stadtwerke München GmbH
München Zum Job 
SWM Services GmbH-Firmenlogo
Projektingenieur*in für Prozess- und Automatisierungstechnik MSR (m/w/d) SWM Services GmbH
München Zum Job 
Bundesamt für Strahlenschutz-Firmenlogo
Ingenieur*in (FH/Bachelor) als Messnetzplaner*in (urban) (m/w/d) Strahlenschutztechnik, Elektrotechnik, Informationstechnik, Telekommunikationstechnik Bundesamt für Strahlenschutz
Oberschleißheim (bei München), Salzgitter, Berlin, Freiburg, Rendsburg, Bonn Zum Job 
RHEINMETALL AG-Firmenlogo
Verstärkung für unsere technischen Projekte im Bereich Engineering und IT (m/w/d) RHEINMETALL AG
deutschlandweit Zum Job 
TÜV Technische Überwachung Hessen GmbH-Firmenlogo
Sachverständiger (m/w/d) Fördertechnik TÜV Technische Überwachung Hessen GmbH
Stadtwerke Tübingen GmbH-Firmenlogo
Elektromonteure (m/w/d) Stadtwerke Tübingen GmbH
Tübingen Zum Job 
Stadtwerke Tübingen GmbH-Firmenlogo
Ingenieur (m/w/d) Netzleitwarte Stadtwerke Tübingen GmbH
Tübingen Zum Job 

Glasfasern haben 20 Mikrometer kleinen Hohlkern

Robuster sind die Glasfasern, die am Max-Planck-Institut für die Physik des Lichts in Erlangen entwickelt worden sind. Anders als gängige Glasfasern besitzen sie keinen festen Kern aus hochreinem Spezialglas, sondern einen Hohlraum mit einem Durchmesser von 20 Tausendstel Millimetern.

Gemessene Nahfeld-Intensitäts-Profile einer Faser bei verschiedenen Einstrahlrichtungen des UV-Strahls. Die Profile zeigen, dass das Licht einmodig ist – es wird also mit einer räumlichen Intensitätsverteilung geleitet. 

Gemessene Nahfeld-Intensitäts-Profile einer Faser bei verschiedenen Einstrahlrichtungen des UV-Strahls. Die Profile zeigen, dass das Licht einmodig ist – es wird also mit einer räumlichen Intensitätsverteilung geleitet. 

Quelle: PTB

Eingehüllt wird der feine Hohlzylinder von einer so genannten Kagomé-Struktur, einem speziellen Muster aus regelmäßig angeordneten Drei- und Sechsecken. Das UV-Licht flutscht gewissermaßen hindurch. An der Kagomé-Struktur prallt es ab wie ein Fußball von der Querlatte des Tors. Wie genau das passiert, können nicht einmal die Erlanger Forscher erklären. Aber es funktioniert.

Erster Anwendungstest mit Bravour bestanden

Ob das UV-Licht tatsächlich keinen Schaden anrichtet, wollten die Erlanger Physiker von einer unabhängigen Institution überprüfen lassen: der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig. Sie speisten einen UV-Strahl mit einer Wellenlänge von 280 Nanometern mit einer Leistung von 15 Milliwatt ein, einer für die Übermittlung von Daten via Licht üblichen Leistung.

Nach mehr als 100 Stunden konnten die Prüfer keine Schäden feststellen. Bei einem ersten Anwendungstest untersuchten sie mit Erfolg den inneren Zustand von Ionen, die sie zuvor isoliert, also gewissermaßen in einen Käfig gesperrt hatten. Das könnte auch den Entwicklern des sagenumwobenen Quantencomputers helfen. Denn Veränderungen des inneren Zustands repräsentieren die digitalen Informationseinheiten Eins und Null.

Ein Beitrag von:

  • Wolfgang Kempkens

    Wolfgang Kempkens studierte an der RWTH Aachen Elektrotechnik und schloss mit dem Diplom ab. Er arbeitete bei einer Tageszeitung und einem Magazin, ehe er sich als freier Journalist etablierte. Er beschäftigt sich vor allem mit Umwelt-, Energie- und Technikthemen.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.