Lotus Effekt 2.0 05.11.2014, 08:52 Uhr

Wasser und Öl resignieren vor Karlsruher Super-Schutzschicht

Schmutz auf dem Autolack, Graffiti an der Hauswand, Matsch an den Schuhen – alles Ärgernisse, denen ein Ingenieur aus Karlsruhe mit Fluoropor begegnet. Der Werkstoff macht den Lotuseffekt auch für Öl möglich und soll sich zur universalen Schutzbeschichtung mausern. 

Wassertropfen perlen von einem Blatt der Lotuspflanze ab. Damit dieser Effekt auch bei Öl auftritt, setzt der Ingenieur aus Karlsruhe auf Hochleistungskunststoffe.

Wassertropfen perlen von einem Blatt der Lotuspflanze ab. Damit dieser Effekt auch bei Öl auftritt, setzt der Ingenieur aus Karlsruhe auf Hochleistungskunststoffe.

Foto: Flickr/tribp

Den Trick der Lotuspflanze, Wasser von der Oberfläche abperlen zu lassen, haben sich Materialhersteller weltweit längst zunutze gemacht. Nissan ist gerade dabei, einen Autolack zu entwickeln, der nicht mehr schmutzig wird. „Allerdings funktioniert dieser Trick nicht für Öle ­– die Lotuspflanze ist wasser- aber nicht ölabweisend“, erklärt Bastian Rapp.

Genau da setzt der Ingenieur des Karlsruher Instituts für Technologie (KIT) an. Er entwickelt am Institut für Mikrostrukturtechnik eine Schutzschicht, die dank Lotuseffekt 2.0 auch Öl unbeeindruckt an sich herunterlaufen lässt.

Top Stellenangebote

Zur Jobbörse
BP Europa SE-Firmenlogo
EV Charging Delivery Engineer (m/f/d) - Aral Pulse BP Europa SE
Bochum, Hamburg Zum Job 
OTTO FUCHS Dülken GmbH & Co. KG-Firmenlogo
Mitarbeiter Technologie Strangpresse (m/w/d) OTTO FUCHS Dülken GmbH & Co. KG
Viersen Zum Job 
Infraserv GmbH & Co. Höchst KG-Firmenlogo
Ingenieur (m/w/d) Infraserv GmbH & Co. Höchst KG
Frankfurt am Main Zum Job 
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB-Firmenlogo
Business Development Industrie 4.0 und Digitalisierung Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB
Karlsruhe Zum Job 
Bundeswehr-Firmenlogo
Leitende Ingenieurin / Leitender Ingenieur (m/w/d) mit Master Bundeswehr
verschiedene Standorte Zum Job 
UX Gruppe-Firmenlogo
Projektleiter (m/w/d) Forschung und Entwicklung UX Gruppe
Gilching Zum Job 
Bundeswehr-Firmenlogo
Leitende Ingenieurin / Leitender Ingenieur (m/w/d) Bundeswehr
verschiedene Standorte Zum Job 
ACONEXT Engineering GmbH-Firmenlogo
Konstrukteur / Technischer Produktdesigner CATIA V5 oder Siemens NX (m/w/d) von Kunststoff- oder Metallbauteilen ACONEXT Engineering GmbH
München Zum Job 
Bundeswehr-Firmenlogo
Ingenieurin / Ingenieur (m/w/d) mit Bachelor Bundeswehr
verschiedene Standorte Zum Job 
ACONEXT Engineering GmbH-Firmenlogo
Entwicklungsingenieur Automotive (m/w/d) ACONEXT Engineering GmbH
München Zum Job 
ACONEXT Engineering GmbH-Firmenlogo
Versuchsingenieur/-techniker zur Erprobung Gesamtfahrzeug und Testing von Komponenten (m/w/d) ACONEXT Engineering GmbH
München, Ingolstadt Zum Job 
ACONEXT Engineering GmbH-Firmenlogo
Softwaretester Automotive (m/w/d) ACONEXT Engineering GmbH
München Zum Job 
ACONEXT Engineering GmbH-Firmenlogo
Software Entwickler Automotive (m/w/d) ACONEXT Engineering GmbH
München Zum Job 
Richard Hönig Wirtschaftsberatungen-Firmenlogo
Strategischer Einkäufer (w/m/d) Richard Hönig Wirtschaftsberatungen
Südbayern Zum Job 
Mainova AG-Firmenlogo
Ingenieur (w/m/d) Instandhaltung Mainova AG
Frankfurt am Main Zum Job 
SWM Services GmbH-Firmenlogo
Projektleitung Mittelspannungsanlagen (m/w/d) SWM Services GmbH
München Zum Job 
DEKRA Automobil GmbH-Firmenlogo
Sachverständiger Schallschutz und Bauakustik (m/w/d) NRW DEKRA Automobil GmbH
Nordrhein-Westfalen Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Projektingenieur Ladeinfrastruktur (w/m/d) im Geschäftsbereich Betrieb und Verkehr Die Autobahn GmbH des Bundes
München Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Projektingenieur im Brückenbau für Neubau-, Ausbau- und Erhaltungsmaßnahmen (w/m/d) Die Autobahn GmbH des Bundes
München Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Projektingenieur im Hochbau (w/m/d) Die Autobahn GmbH des Bundes
München Zum Job 

Das Geheimnis sind Fluorpolymere

Wo setzt Rapp den Hebel an, um der Industrie ein neues Supermaterial zu bescheren? „Ölabweisende Oberflächen müssen chemisch anders aufgebaut sein, hierfür sind Fluorpolymere notwendig“, sagt Rapp. Das sind Hochleistungskunststoffe, die hitzebeständig und chemisch stabil sind – zu den bekanntesten Vertretern zählt das Beschichtungsmaterial Teflon für Antihaft-Bratpfannen. „Kombiniert man die chemischen Eigenschaften der Fluorpolymere mit der Rauigkeit der Lotuspflanze, erreicht man Oberflächen, von denen sowohl Wasser als auch Öle abperlen.“

Derzeit steht der Ingenieur noch vor einem Problem: Zwar ist es ihm gelungen, im Labor eine superabweisende Oberfläche mit Lotus-2.0-Effekt herzustellen. Doch im Praxiseinsatz geht sie schnell in die Knie, weil sie zu empfindlich gegen Abrieb ist. Die Lösung: Rapp entwickelt eine neue Klasse fluorierter Polymere namens Fluoropor, die wesentlich robuster sein soll. Der Lotus-2.0-Effekt soll dann auf nahezu beliebigen Oberflächen funktionieren.

Der Werkstoff Fluoropor lässt Öl und Wasser abperlen. Der Bund fördert diese Erfindung mit 2,85 Millionen Euro und hofft auf ein neues Industriematerial.

Der Werkstoff Fluoropor lässt Öl und Wasser abperlen. Der Bund fördert diese Erfindung mit 2,85 Millionen Euro und hofft auf ein neues Industriematerial.

Quelle: KIT

Die Industrie würde in die Hände klatschen: Fluoropor könnte der verarbeitenden Industrie beispielsweise feinporige Siebe zur Verfügung stellen. Mit diesen ließen sich Öl- und Wassergemische wieder trennen, die als Kühlschmierstoffe zum Einsatz kommen. Es könnte aber auch Windschutzscheiben fürs Auto geben, an denen kein Wasser kondensiert und die im Winter nicht einfrieren.

Bund fördert Entwicklung mit 2,85 Millionen Euro

Von diesen Vorteilen hat Ingenieur Rapp das Bundesministerium für Bildung und Forschung schon überzeugt. Er erhält für die kommenden vier Jahre 2,85 Millionen Euro für den Aufbau einer wissenschaftlichen Nachwuchsgruppe. Ins Team gesellen sich Chemieverfahrenstechniker und Fachleute für organische Chemie, Materialchemie und Prozesstechnik.

Forschungsort bleibt das KIT, sagt Rapp: „Am KIT-Institut für Mikrostrukturtechnik und seiner Technologieplattform Karlsruhe Nano Micro Facility steht uns für unsere Forschung eine große Bandbreite an Analyse- und Strukturierungsmethoden zur Verfügung, zum Beispiel die Rasterkraft- und Rasterelektronenmikroskopie.“ Ein solches Mikroskop führt einen Elektronenstrahl über das zu vergrößernde Objekt. Die Wechselwirkungen zwischen Elektronen und Objekt lassen sich in ein Bild mit hoher Schärfentiefe übersetzen.

 

Ein Beitrag von:

  • Patrick Schroeder

    Patrick Schroeder arbeitet als freiberuflicher Journalist für Zeitschriften und Onlinemagazine wie die VDI Nachrichten und Ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.