Hydrogel statt Lithium 30.01.2026, 11:01 Uhr

Zitteraal-Batterien: Wie die verrückte Technologie jetzt praxistauglich wird

Seit Jahren versuchen Forscher, das Prinzip des Zitteraals auf Batterien zu übertragen. Jetzt ist einem Team aus den USA ein entscheidender Durchbruch gelungen.

Der Zitteraal ist das Vorbild für Hydrogel-Batterien

Zitteraale leben in den tropischen Süßwasserbecken Südamerikas.

Foto: picture alliance / PIXSELL | Tomislav Miletic/PIXSELL

Ist Hydrogel nach Natrium-Batterien nun die nächste spannende Alternative zur Lithiumzelle? Das Material, das zum Beispiel auch für Kontaktlinsen zum Einsatz kommt, besitzt mehrere nützliche Eigenschaften für diesen Use Case. Vor allem leitet es Ionen. Bisherige Hydrogel-Batterien waren jedoch ineffizient.

Forscher der Penn State University haben nun jedoch ein Modell entwickelt, das effizienter sein soll als alle Vorgänger. Der Clou: Es kommt ohne externe Stützstruktur aus. Stattdessen besteht sie aus ultradünnen Schichten. Wie die Universität am 28. Januar meldete, erreicht die Batterie damit die bisher unerreichte Leistungsdichte von 44 kW pro m³. Damit wird die Technologie für mehrere Anwendungen interessant.

Der Zitteraal als Vorbild

Das Vorbild für die Technologie liefert die Natur, genauer gesagt der Zitteraal. Denn Zitteraale sind lebende Kraftwerke. Mit spezialisierten Zellen, den sogenannten Elektrozyten, erzeugen sie Stromstöße von über 600 V. Das reicht aus, um Beute zu betäuben oder Angreifer abzuwehren. Die Elektrozyten sind extrem dünn und produzieren aus kleinstem Volumen eine elektrische Leistung, die in Relation gesehen enorm ist.

Stellenangebote im Bereich Energie & Umwelt

Energie & Umwelt Jobs
THOST Projektmanagement GmbH-Firmenlogo
Ingenieur*in / Projektmanager*in (m/w/d) in der Steuerung von Großprojekten im Bereich Energiewende THOST Projektmanagement GmbH
European Energy A/S-Firmenlogo
Grid Connection Specialist - Wind / PV (m/w/d) European Energy A/S
Markkleeberg bei Leipzig Zum Job 
Die Autobahn GmbH des Bundes-Firmenlogo
Bauingenieur für Straßenplanung und -entwurf / Immissionsschutz (m/w/d) Die Autobahn GmbH des Bundes
Regensburg Zum Job 
Stadtwerke Essen AG-Firmenlogo
Ingenieur / Techniker (gn) für Kanal- und Entwässerungsplanung Stadtwerke Essen AG
Die Autobahn GmbH des Bundes, Niederlassung Südbayern-Firmenlogo
Ingenieur (m/w/d) Stoffstrom- und Abfallmanagement für die Außenstelle München-Maisach Die Autobahn GmbH des Bundes, Niederlassung Südbayern
München-Maisach Zum Job 
Die Autobahn GmbH des Bundes, Niederlassung Südbayern-Firmenlogo
Sachbearbeiter Wassertechnik - Gewässerschutzbeauftragter (m/w/d) in der Außenstelle Maisach Die Autobahn GmbH des Bundes, Niederlassung Südbayern
Maisach Zum Job 
Die Autobahn GmbH des Bundes, Niederlassung Südbayern-Firmenlogo
Umweltingenieur / Umwelttechniker als Ingenieur Abfallmanagement im Betrieb für die Außenstelle München-Maisach (m/w/d) Die Autobahn GmbH des Bundes, Niederlassung Südbayern
Maisach Zum Job 
Rolls-Royce-Firmenlogo
Projektingenieur (m/w/d) Elektrotechnik Rolls-Royce
Friedrichshafen Zum Job 
Daldrop + Dr.Ing.Huber GmbH + Co. KG-Firmenlogo
Projektleiter TGA (m/w/d) Reinraumtechnik Daldrop + Dr.Ing.Huber GmbH + Co. KG
Neckartailfingen Zum Job 
Stadtwerke Potsdam GmbH-Firmenlogo
Experte (m/w/d) Energieinfrastruktur und Bauprojekte - Planung und Realisierung - Stadtwerke Potsdam GmbH
Potsdam Zum Job 
VSE Verteilnetz GmbH-Firmenlogo
Technischer Sachbearbeiter Sekundärtechnik-Ausführung Schutz- und Leittechnik (m/w/d) VSE Verteilnetz GmbH
Saarwellingen Zum Job 
Netz Leipzig GmbH-Firmenlogo
Teamleitung (m/w/d) Leitstelle Strom Netz Leipzig GmbH
Leipzig Zum Job 
Landesbetrieb Straßenwesen Brandenburg-Firmenlogo
Ingenieur / Ingenieurin (m/w/d) als Dezernatsleitung Planung West Landesbetrieb Straßenwesen Brandenburg
Potsdam Zum Job 
Regierungspräsidium Freiburg-Firmenlogo
Bachelor / Diplom (FH) (w/m/d) Bau-, Chemie-, Umweltingenieurwesen, Verfahrenstechnik Regierungspräsidium Freiburg
Freiburg Zum Job 
Gemeinde Steinen-Firmenlogo
Leiter/in des Fachbereichs Bauen und Umwelt (w/m/d) Gemeinde Steinen
Steinen Zum Job 
Staatliches Hochbauamt Stuttgart-Firmenlogo
Ingenieur der Fachrichtung Landschaftsplanung / Landschaftsarchitektur / Umweltplanung (w/m/d) Staatliches Hochbauamt Stuttgart
Stuttgart, Stetten am kalten Markt Zum Job 
BG ETEM-Firmenlogo
Ingenieur/-in (m/w/d) für den Außendienst als Aufsichtsperson BG ETEM
Region Hannover-Braunschweig-Göttingen Zum Job 
GW Batterien GmbH-Firmenlogo
Anwendungstechniker (m/w/d) GW Batterien GmbH
Zwickau Zum Job 
Stadt Koblenz-Firmenlogo
Ingenieur (w/m/d) für die Betreuung der Hochwasserschutzanlagen Stadt Koblenz
Koblenz Zum Job 
Gemeindewerke Baiersbronn-Firmenlogo
Technische:r Betriebsleiter:in für Strom und Telekommunikation Gemeindewerke Baiersbronn
Baiersbronn Zum Job 

Diese Eigenschaft macht sie für Materialwissenschaftler interessant. Denn der Zitteraal erzeugt Strom nicht durch chemische Reaktionen wie eine klassische Batterie, sondern durch den Fluss von Ionen durch hauchdünne Zellmembranen. Genau dieses Prinzip lässt sich mit Hydrogelen nachahmen: Die wasserreichen Materialien können Ionen leiten und in geschichteter Anordnung Spannung aufbauen – und das ohne giftige Metalle.

Die Idee ist nicht neu – das Problem auch nicht

Bereits 2017 stellten Forscher der Universität Fribourg und der University of Michigan erste Batterien vor, die nach dem Zitteraal-Prinzip arbeiten. Die Grundidee: Hydrogele werden in einem bestimmten Muster geschichtet, um die ionischen Prozesse des Zitteraals nachzuahmen.

Die bisherigen Hydrogel-Batterien waren jedoch zu schwach für praktische Anwendungen. Sie brauchten aufgrund ihrer flexible, gelartigen Struktur externe Stützstrukturen, um zu funktionieren. Dadurch lieferten sie nur geringe Leistungsdichten, die keinen Einsatz in echten Geräten erlaubte.

Der Durchbruch: Dünnere Schichten, mehr Leistung

Das Team der Penn State University hat dieses Problem jetzt nach eigenen Angaben gelöst. Der Schlüssel liegt in der Schichtdicke. Mit einem Verfahren namens Spin-Coating – wobei Material auf eine rotierende Oberfläche aufgetragen wird – erzeugten die Forscher im Labor Hydrogel-Schichten von nur 20 µm Dicke. Das entspricht dem Bruchteil eines menschlichen Haares.

Diese extrem dünnen Schichten reduzieren den elektrischen Widerstand drastisch. Das Ergebnis ist eine Leistungsdichte von 44 kW pro m³, die erstmals ohne externe Stützstruktur auskommt

„Nach unserem Wissen ist das die erste Energiequelle, die vollständig in einer Hydrogel-Lösung enthalten ist und keine externe Unterstützung benötigt“, erklärte Joseph Najem, Assistenzprofessor für Maschinenbau an der Penn State University.

Keine Konkurrenz für Lithium-Ionen

Um Missverständnisse zu vermeiden: Zitteraal-Batterien werden Lithium-Ionen-Akkus nicht ersetzen. Mit 44 kW/m³ liegen sie weit unter den 250-700 kW/m³, die moderne Lithium-Zellen erreichen.

Aber darum geht es auch nicht. Die Hydrogel-Batterie zielt auf Anwendungen, bei denen klassische Akkus schlicht nicht funktionieren:

  • Medizinische Implantate: Im menschlichen Körper sind giftige Materialien tabu. Hydrogele sind biokompatibel – deshalb lassen sie sich auch als Kontaktlinsen nutzen – und vertragen sich mit dem umgebenden Gewebe vertragen.
  • Wearables und Hautsensoren: Smartwatches, Fitness-Tracker oder medizinische Pflaster mit Sensoren – all diese Geräte sitzen direkt auf der Haut und müssen sich mit ihr bewegen. Starre Batterien sind dafür weniger gut geeignet.
  • Soft Robotics: Flexible Roboter, wie sie etwa in der Medizintechnik oder als Greifer eingesetzt werden, brauchen auch flexible Stromquellen. Starre Akkus passen nicht zu weichen Maschinen.

Funktionsfähig weit unter 0°C

Die US-Forscher haben ihr Material zusätzlich optimiert. Durch die Zugabe von Glycerin bleibt die Batterie laut der Pressemitteilung auch bei Temperaturen bis – 80 °C funktionsfähig. Herkömmliche Hydrogele wären bei diesen Temperaturen längst eingefroren.

Außerdem soll das neue Material deutlich langsamer austrocknen: Während Standard-Hydrogele innerhalb von Minuten ihre Leitfähigkeit verlieren, bleibt die neue Formulierung nach Angaben der Penn State-Wissenschaftler tagelang stabil.

Wie geht es weiter?

Marktreif ist die Zitteraal-Batterie noch nicht. Die Forscher wollen jetzt in weiteren Projekten ihre Leistungsdichte weiter erhöhen und an Möglichkeiten arbeiten, die Batterien wieder aufzuladen. Idealerweise könnte das selbstständig passieren, etwa durch Nutzung von Körperwärme oder Bewegung.

Bis Zitteraal-Batterien in Implantaten oder Robotern landen, wird es also noch dauern. Aber nach fast einem Jahrzehnt Forschung hat die von der Biologie inspirierte Technologie einen wichtigen Schritt gemacht: vom Kuriosum aus dem Labor zur ernsthaften Option.

Die Studie wurdeim Fachjournal Advanced Science veröffentlicht.

Ein Beitrag von:

  • Magnus Schwarz

    Magnus Schwarz schreibt zu den Themen Wasserstoff, Energie und Industrie. Nach dem Studium in Aachen absolvierte er ein Volontariat und war mehrere Jahre als Fachredakteur in der Energiebranche tätig. Seit Oktober 2025 ist er beim VDI Verlag.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.