Neuartiges magnetisches Material 13.11.2025, 14:00 Uhr

Spiral-Magnet verblüfft Physik und könnte Chips verändern

Ein neues Magnetmaterial überrascht mit Spiralspins und schaltbarem Hall-Effekt – spannend für künftige Elektronik und Chipdesign.

Künstlerische Darstellung des p-Wellen-Splittings

Künstlerische Darstellung des p-Wellen-Splittings: Laufrichtungsabhängiger Spin von Elektronen (grüne/lila Pfeile) über einer magnetischen Gitterstruktur.

Foto: Dr. Jan Masell, KIT

Manchmal wirkt Physik wie ein vertrautes Gelände, das niemand mehr richtig überraschen kann. Eisen zieht an, Antiferromagneten tun nichts nach außen, Elektronen folgen bekannten Regeln. Doch genau an dieser Stelle bricht ein neuartiges Material aus der Routine aus. Forschende aus Japan und Deutschland haben einen sogenannten p-Wellen-Magneten entwickelt, dessen Elektronen eine Spiralordnung einnehmen – und damit elektrischen Strom auf ungewohnte Weise ablenken. Die Ergebnisse erschienen in Nature.

Technisch versierte Leserinnen und Leser kennen das Grundprinzip: In ferromagnetischen Materialien zeigen Spins in eine gemeinsame Richtung. In Antiferromagneten heben sich die Spins hingegen gegenseitig auf. Der neue p-Wellen-Magnet spielt nicht nach diesem Schema. Hier rotiert die Magnetisierung im Abstand weniger Atome – und zwar komplett einmal im Kreis.

Eine Spirale aus Spins

Dr. Jan Masell vom Karlsruher Institut für Technologie (KIT) fasst diese ungewöhnliche Struktur folgendermaßen zusammen: „Die Magnetisierung rotiert auf einer Länge von nur sechs atomaren Gitterplätzen einmal um 360 Grad, wobei Nachbarn fast genau 60 Grad Differenz haben.“ Das bedeutet: Die Spins bilden keine lineare Ordnung, sondern eine sich drehende Struktur, ähnlich einer Schraube im Material. Dieser Aufbau entsteht in einer Verbindung aus mehreren Metallen.

Warum ist das spannend? Masell erklärt weiter: „Zusätzlich weist unser Material eine ganz kleine messbare Magnetisierung auf, also ein kleines bisschen Ferromagnetismus – die Spirale ist also nicht perfekt.“ Gerade diese winzige Unordnung sorgt für ein Verhalten, das Fachleute sonst nur unter starken Magnetfeldern kennen.

Stellenangebote im Bereich Elektrotechnik, Elektronik

Elektrotechnik, Elektronik Jobs
THOST Projektmanagement GmbH-Firmenlogo
Ingenieur*in / Projektmanager*in (m/w/d) in der Steuerung von Großprojekten im Bereich Energiewende THOST Projektmanagement GmbH
European Energy A/S-Firmenlogo
Grid Connection Specialist - Wind / PV (m/w/d) European Energy A/S
Markkleeberg bei Leipzig Zum Job 
Fachhochschule Aachen-Firmenlogo
Professur "Leistungselektronik und elektrische Versorgungsnetze" Fachhochschule Aachen
FFG Flensburger Fahrzeugbau Gesellschaft mbH-Firmenlogo
Konstrukteur (m/w/d) - Elektromechanik FFG Flensburger Fahrzeugbau Gesellschaft mbH
Flensburg Zum Job 
TÜV Technische Überwachung Hessen GmbH-Firmenlogo
Ausbildung Prüfingenieur/-in (m/w/d) bzw. Sachverständige/-r (m/w/d) für den Tätigkeitsbereich Fahrzeugprüfung und Fahrerlaubnisprüfung TÜV Technische Überwachung Hessen GmbH
Schlüchtern Zum Job 
Wirtgen GmbH-Firmenlogo
Functional Safety Software Engineer (m/w/d) - für mobile Arbeitsmaschinen Wirtgen GmbH
Windhagen Zum Job 
WARO MSR-Technik GmbH-Firmenlogo
SPS-/DDC-Programmierer (m/w/d) und/oder DDC-Programmierer (m/w/d) WARO MSR-Technik GmbH
Lübeck Zum Job 
swa Netze GmbH-Firmenlogo
Elektroingenieur (m/w/d) Einspeiseanlagen mit Führungsperspektive swa Netze GmbH
Augsburg Zum Job 
WBS TRAINING-Firmenlogo
Lernbegleiter:in / Trainer:in für SPS-Programmierung (m/w/d) WBS TRAINING
Deutschland / Homeoffice Zum Job 
Prognost Systems GmbH-Firmenlogo
Spezialist für Maschinendiagnose im Technischen Support / Elektrotechniker / Maschinenbauer (m/w/d) Prognost Systems GmbH
HEINE Optotechnik GmbH & Co. KG-Firmenlogo
Ingenieur für Automatisierung und Robotik (m/w/d) HEINE Optotechnik GmbH & Co. KG
Gilching bei München Zum Job 
noris network AG-Firmenlogo
Elektroingenieur für GLT und MSR-Technik (m/w/d) noris network AG
Nürnberg Zum Job 
noris network AG-Firmenlogo
Techniker Zutrittskontrolle & Videoüberwachung / Datacenter Engineer (m/w/d) noris network AG
Nürnberg Zum Job 
General Aerospace GmbH-Firmenlogo
Industrial Engineer (w/m/d) General Aerospace GmbH
Eschbach Zum Job 
Hochschule Heilbronn-Firmenlogo
Professur für angewandte KI im Wirtschaftsingenieurwesen Hochschule Heilbronn
Heilbronn Zum Job 
Honda R&D Europe (Deutschland) GmbH-Firmenlogo
Entwicklungsingenieur (m/w/d) Fahrdynamik, Fahrversuch und Simulation Honda R&D Europe (Deutschland) GmbH
Offenbach am Main Zum Job 
J.P. Sauer & Sohn Maschinenbau GmbH-Firmenlogo
Elektroingenieur (m/w/d) Produktindustrialisierung J.P. Sauer & Sohn Maschinenbau GmbH
Bundesamt für Bauwesen und Raumordnung (BBR)-Firmenlogo
Ingenieurin / Ingenieur (w/m/d) als Projektleitung "Elektro- bzw. Nachrichtentechnik" Bundesamt für Bauwesen und Raumordnung (BBR)
Rolls-Royce-Firmenlogo
Qualitätsingenieur (m/w/d) Elektrotechnik Rolls-Royce
Augsburg Zum Job 
Rolls-Royce-Firmenlogo
Messingenieur - Fachbereich Emissionsmesstechnik (m/w/d) Rolls-Royce
Friedrichshafen Zum Job 

Ein Hall-Effekt ohne äußeres Feld

Normalerweise benötigen Sie für den anomalen Hall-Effekt ein ausgeprägtes Magnetfeld, damit Elektronen seitlich abknicken. Hier geschieht das allein durch die innere Spiralstruktur. Die Elektronen laufen nicht mehr geradlinig durch das Material, sondern werden seitlich abgelenkt – als hätte jemand im Material winzige Leitplanken versteckt.

Masell beschreibt zudem, dass sich die Spiralstruktur manipulieren lässt: „Wir konnten außerdem zeigen, dass sich die Spiralanordnung in der Magnetisierung drehen lässt – der Effekt des p-Wellen-Magneten ist also schaltbar.“

Das ist technologisch relevant, weil sich der elektrische Widerstand dabei messbar verändert. Ein Material, dessen Stromfluss sich allein über innere Magnetstruktur beeinflussen lässt, öffnet neue Wege für Schaltelemente.

Was das für die Technik bedeutet

Der p-Wellen-Magnet ist kein fertiges Produkt für die Chipindustrie. Aber er deutet an, dass komplexe Spinstrukturen mehr leisten können als bisher angenommen. Sie bieten Ansätze für kleine, energiearme Schalter. Sie könnten gleiche Funktionen übernehmen wie klassische magnetische Bauteile – nur kompakter, schneller und ohne starke externe Magnetfelder.

Gleichzeitig dient das Material als Laborwerkzeug: Forschende können damit untersuchen, wie Elektronen reagieren, wenn Magnetismus und elektrischer Transport eng miteinander verwoben sind. Besonders spannend wird das, wenn Sie an Supraleiter oder Spintronik denken, die schon heute als Alternativen zu klassischen Siliziumtechnologien diskutiert werden.

Hier geht es zur Originalpublikation

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Themen im Artikel

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.