Schlanker und schlauer 27.03.2025, 14:00 Uhr

Magnetische E-Haut: So fühlt Technik wie ein Mensch

Neue E-Skin erkennt Magnetfelder mit nur einem Sensor. Dünn, transparent und flexibel – inspiriert von echter Haut und Gehirn.

Elektronische Haut

Die neuen E-skins verfügen über eine ultradünne, zur menschlichen Haut passende Membran und sind in der Lage, Magnetfelder mit einem einzigen, globalen Sensor präzise zu verfolgen.

Foto: P. Makushko / HZDR

Ein Team vom Helmholtz-Zentrum Dresden-Rossendorf hat eine neue Generation elektronischer Haut vorgestellt. Die innovative E-Skin erkennt Magnetfelder mit nur einem globalen Sensor, spart Energie und ahmt die Funktionsweise menschlicher Haut nach. Dank einer hauchdünnen, atmungsaktiven Membran lassen sich Anwendungen in virtueller Realität, Robotik oder auch unter Wasser realisieren. Statt vieler Sensoren kommt eine einzige Ausleseeinheit zum Einsatz – ähnlich wie das Gehirn bei Berührungen reagiert. Die Technologie eröffnet neue Wege der Mensch-Maschine-Interaktion.

Vom Roboter-Finger zur Mensch-Maschine-Schnittstelle

Die Idee, Maschinen das Fühlen beizubringen, ist nicht neu. Seit Jahren arbeiten Forschende daran, Roboter mit künstlicher Haut auszustatten. Diese sogenannten „Electronic Skins“ – kurz E-Skins – ahmen die Eigenschaften menschlicher Haut nach. Sie sollen nicht nur Berührungen erkennen, sondern auch Temperatur oder chemische Reaktionen wahrnehmen.

Doch bislang war diese Technik häufig sperrig. Komplexe Elektronik, viele Sensoren und hohe Energiebedarfe machten die Integration schwierig – besonders in flexiblen, tragbaren Anwendungen. Die neue Entwicklung vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) verspricht nun Abhilfe.

Ein globaler Sensor ersetzt viele einzelne

Die Wissenschaftlerinnen und Wissenschaftler des HZDR haben eine elektronische Haut entwickelt, die magnetische Felder erkennen kann – mit nur einem einzigen Sensorfeld. Dieses ist so dünn und leicht, dass es auf einer Membran sitzt, die nur wenige tausendstel Millimeter misst. Gleichzeitig ist sie perforiert, also mit kleinen Löchern versehen. So bleibt die Haut luft- und feuchtigkeitsdurchlässig und lässt die darunterliegende menschliche Haut weiter „atmen“.

Stellenangebote im Bereich Elektrotechnik, Elektronik

Elektrotechnik, Elektronik Jobs
Deutsche Rentenversicherung Bund-Firmenlogo
Ingenieur*in Betrieb / technische Gebäudeausrüstung HKLS (m/w/div) Deutsche Rentenversicherung Bund
Aptar Radolfzell GmbH-Firmenlogo
Projektleiter Industrialisierung Montage (m/w/d) Aptar Radolfzell GmbH
Eigeltingen Zum Job 
KLN Ultraschall AG-Firmenlogo
Werkzeugkonstrukteur Kunststoffverbindungstechnik (w/m/d) KLN Ultraschall AG
Heppenheim (Bergstraße) Zum Job 
Evos Hamburg GmbH-Firmenlogo
Betriebsingenieur EMSR (m/w/d) Evos Hamburg GmbH
Hamburg Zum Job 
Stadtwerke Schneverdingen-Neuenkirchen GmbH-Firmenlogo
Netzplaner (m/w/d) Stadtwerke Schneverdingen-Neuenkirchen GmbH
Schneverdingen-Neuenkirchen Zum Job 
Netzgesellschaft Potsdam GmbH-Firmenlogo
Projektingenieur (m/w/d) Energietechnik - Umspannwerke/Hochspannungsfreileitung - Netzgesellschaft Potsdam GmbH
Potsdam Zum Job 
Birkenstock Productions Hessen GmbH-Firmenlogo
Verantwortliche Elektrofachkraft (m/w/d) Birkenstock Productions Hessen GmbH
Steinau-Uerzell Zum Job 
TenneT TSO GmbH-Firmenlogo
Elektroingenieur für die Planung und Sicherstellung der europäischen Stromversorgung (m/w/d) TenneT TSO GmbH
Netzgesellschaft Potsdam GmbH-Firmenlogo
Ingenieur (m/w/d) Strategische Netzplanung Strom Netzgesellschaft Potsdam GmbH
Potsdam Zum Job 
RES Deutschland GmbH-Firmenlogo
Head of Engineering / Leitung technische Planung Wind- & Solarparks (m/w/d) RES Deutschland GmbH
Vörstetten Zum Job 
MEWA Textil-Service SE & Co. Management OHG-Firmenlogo
Projektmanager (m/w/d) PMO Business Transformation MEWA Textil-Service SE & Co. Management OHG
Wiesbaden Zum Job 
MEWA Textil-Service SE & Co. Management OHG-Firmenlogo
Projektingenieur (m/w/d) Elektrotechnik MEWA Textil-Service SE & Co. Management OHG
Wiesbaden Zum Job 
KÜBLER GmbH-Firmenlogo
Techniker / Ingenieur / Fachplaner / TGA (m/w/d) Heizungstechnik und Elektro KÜBLER GmbH
Ludwigshafen Zum Job 
WPW JENA GmbH-Firmenlogo
Projektingenieur Elektroplanung (m/w/d) WPW JENA GmbH
Jena, hybrides Arbeiten Zum Job 
EMSCHERGENOSSENSCHAFT und LIPPEVERBAND-Firmenlogo
Gruppenleiter*in Elektrotechnik (m/w/d) EMSCHERGENOSSENSCHAFT und LIPPEVERBAND
Hamburg Wasser-Firmenlogo
Ingenieur Elektrotechnik / Kraftwerkstechnik Klärwerk (m/w/d) Hamburg Wasser
Hamburg Zum Job 
Hamburger Hochbahn AG-Firmenlogo
Senior - Projektleiter Elektrotechnik Betriebsanlagen (w/m/d) Hamburger Hochbahn AG
Hamburg Zum Job 
Christian-Albrechts-Universität zu Kiel-Firmenlogo
Ingenieur*in der Fachrichtung Versorgungstechnik / Maschinenbau oder Elektrotechnik als Leitung des Referats -Technischer Betrieb und Service- Christian-Albrechts-Universität zu Kiel
Hochschule Angewandte Wissenschaften München-Firmenlogo
Professur für Energiewandler und Energiespeicher in der Fahrzeugtechnik (W2) Hochschule Angewandte Wissenschaften München
München Zum Job 
Haus der Technik e.V.-Firmenlogo
Fachdozent/in und Berater/in (m/w/d) für Krane und Hebezeuge in der Weiterbildung Haus der Technik e.V.

Bisherige E-Skins arbeiten meist mit vielen Sensorpunkten, die jeweils eigene Transistoren benötigen. „Unsere Idee war, ein System zu entwickeln, das energieeffizienter ist und besser zum Menschen und zur weichen menschlichen Haut passt“, erklärt Denys Makarov vom Institut für Ionenstrahlphysik und Materialforschung am HZDR.

Die Funktionsweise: Wie echte Haut – aber digital

Im Zentrum der neuen E-Skin steht eine magnetosensitive Funktionsschicht. Diese Schicht reagiert auf Magnetfelder. Sie verändert ihren elektrischen Widerstand, je nachdem, wie stark das Magnetfeld an einer bestimmten Stelle ist. Eine zentrale Ausleseeinheit – vergleichbar mit dem menschlichen Gehirn – analysiert diese Veränderungen. So lässt sich exakt bestimmen, wo das Magnetfeld auftritt.

„Bei echter Haut spielt es keine Rolle, wo ich sie berühre: Das Signal gelangt über die Nerven ins Gehirn, wird dort verarbeitet und das Gehirn erkennt den Berührungspunkt“, beschreibt Pavlo Makushko, Doktorand am HZDR und Erstautor der Veröffentlichung. Genau dieses Prinzip wird nun auf künstliche Haut übertragen – mit nur einem einzigen Sensorfeld statt vieler Einzelpunkte.

Tomographie als Schlüssel

Möglich wird dieses Verfahren durch ein Prinzip, das aus der medizinischen Bildgebung bekannt ist: die Tomographie. Dabei werden aus mehreren Messwerten Informationen über die Lage eines Signals im Inneren eines Körpers gewonnen – etwa bei der Magnetresonanztomographie (MRT) oder Computertomographie (CT).

Auf E-Skins angewandt, bedeutet das: Aus verschiedenen Widerstandsmessungen an der Sensorfläche berechnet die Ausleseeinheit, wo das Magnetfeld wirkt. Dass diese Technik nun auch bei sehr schwachen Signalen funktioniert, ist laut Makushko ein wichtiger Fortschritt: „Dass es uns gelungen ist, diese Methode experimentell zu bestätigen, ist ein bedeutender technischer Erfolg unserer Arbeit.“

Einsatzmöglichkeiten: Unter Wasser, in der Luft und in der virtuellen Realität

Die Anwendungsfelder für diese neue Art von E-Skin sind vielfältig. Ein Beispiel: das Smartphone-Display unter Wasser. Normale Touchscreens versagen dort oft. Mit einem magnetischen Stift – oder einem Magnetpad im Handschuh – könnte das Display dennoch bedient werden, selbst bei Kälte oder Nässe.

Auch für Virtual-Reality-Anwendungen bieten sich neue Möglichkeiten. Mithilfe der E-Skin könnten Gesten erkannt werden, ohne dass physische Berührungen nötig sind. In solchen Umgebungen ist oft nicht der Mensch, sondern die Maschine mit der Haut ausgestattet – zum Beispiel ein Roboterarm, der in einer virtuellen Fabrik arbeitet.

In der Industrie wiederum könnten Magnetpfade in Maschinen eingebaut werden, um Positionen kontaktlos und störungsfrei zu erfassen. Gerade in lauten oder vibrationsreichen Umgebungen ist das ein Vorteil gegenüber klassischen Sensoren.

Robust und störsicher

Ein weiterer Pluspunkt laut Forschungsteam: Magnetfeldsensoren reagieren weniger empfindlich auf äußere Einflüsse. Während optische oder kapazitive Sensoren durch Licht, Feuchtigkeit oder elektromagnetische Störungen beeinträchtigt werden können, bleiben magnetische Systeme stabil. So könnten etwa Bedienoberflächen in Fahrzeugen auch bei extremen Bedingungen zuverlässig arbeiten.

Auch in der Medizin könnten Anwendungen entstehen – etwa bei Prothesen, die durch Magnetimpulse gesteuert werden. Die dünne, transparente E-Skin lässt sich unauffällig integrieren und wäre damit ein Baustein für tragbare Technologien der nächsten Generation.

Hier geht es zur Originalpublikation

Ein Beitrag von:

  • Dominik Hochwarth

    Redakteur beim VDI Verlag. Nach dem Studium absolvierte er eine Ausbildung zum Online-Redakteur, es folgten ein Volontariat und jeweils 10 Jahre als Webtexter für eine Internetagentur und einen Onlineshop. Seit September 2022 schreibt er für ingenieur.de.

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.