Schwimmfarne als Vorbild 23.08.2016, 12:18 Uhr

Mit einem Pelz aus Karlsruhe lässt sich eine Ölpest beseitigen

Ölkatastrophen könnten bald mit deutscher Technik wirkungsvoll bekämpft werden. Ingenieure haben nach dem Vorbild von Schwimmfarnen ein Material entwickelt, das kein Wasser aufnimmt, dafür aber große Mengen Öl. Anschließend lässt sich der Nanopelz einfach aus dem Wasser fischen – mit seiner Ölfracht.

Strand in Gulf Shores in Alabama: Nach dem Untergang der Ölplattform Deepwater Horizon kamen chemische Dispersionsmittel zum Einsatz, um einen Teil der 780 Millionen Liter Öl zu binden. Mit verheerenden Folgen für die Umwelt. KIT-Forscher entwickeln deswegen eine umweltfreundliche Alternative.  

Strand in Gulf Shores in Alabama: Nach dem Untergang der Ölplattform Deepwater Horizon kamen chemische Dispersionsmittel zum Einsatz, um einen Teil der 780 Millionen Liter Öl zu binden. Mit verheerenden Folgen für die Umwelt. KIT-Forscher entwickeln deswegen eine umweltfreundliche Alternative.  

Foto: Dan Anderson/dpa

Auf der Suche nach einer umweltfreundlichen Möglichkeit, Ölteppiche zu entfernen, entwickelt eine Forschergruppe des Karlsruher Instituts für Technologie (KIT) den so genannten Nanofur – ein Nanopelz aus Kunststoff mit winzigen Härchen und Kratern.

Die Krux: Nanofurs Fähigkeit, Öl zu binden, variiert je nach Form und Länge der Härchen. Die Lösung: ein Blick in die Natur. „Wir untersuchen in der Natur vorkommende Nano- und Mikrostrukturen, um sie für technische Entwicklungen zu übernehmen“, erklärt KIT-Wissenschaftler Hendrik Hölscher. 

Schwimmfarne sind Meister der Ölabsorption 

Um die bestmögliche Kombination aus Haarlänge und -form  zu finden, haben die Wissenschaftler Schwimmfarne (Salvinia) unter die Lupe genommen – Pflanzen mit 2 bis 20 cm großen Blättern, die in den Tropen Mittel- und Südamerikas an der Wasseroberfläche treiben. „Dass die Blätter dieser Pflanzen wasserabstoßend sind, war bereits bekannt“, sagt Forscherin Claudia Zeiger. „Wir haben erstmals ihre Eigenschaft Öl zu absorbieren untersucht.“ 

Das Blatt eines Schwimmfarns absorbiert den Öltropfen in 30 Sekunden: Das Geheimnis der Absorption sind so genannte Trichome – haarähnliche Ausläufer auf der Blattoberfläche.

Das Blatt eines Schwimmfarns absorbiert den Öltropfen in 30 Sekunden: Das Geheimnis der Absorption sind so genannte Trichome – haarähnliche Ausläufer auf der Blattoberfläche.

Foto: KIT

Ein Video zeigt, wie aufnahmefähig die Schwimmfarn-Blätter sind: Ein Wissenschaftler gibt mit einer Pipette einen rund 2 cm großen Öltropfen in ein mit Wasser gefülltes Reagenzglas. Anschließend taucht er mit einer Pinzette ein Blatt – ebenfalls rund 2 cm groß – in den Tropfen. Es dauert nur 30 s, bis das Öl vollständig aufgenommen ist. Das Wasser ist vom Öl gesäubert, das Blatt schwarz wie die Nacht. 

Haar-Enden in Schneebesen-Form sind die Gewinner 

Das Geheimnis der Absorption sind sogenannte Trichome – haarähnliche Ausläufer auf der Blattoberfläche, die zwischen 0,3 und 2,5 mm lang sind. Absorbieren Blätter mit den längsten Haaren das meiste Öl? Könnte man annehmen, ist aber nicht so. „Ausschlaggebend für die Öl-Aufnahmefähigkeit ist die Form der Haarenden“, sagt Zeiger. Das meiste Öl absorbierten Blätter der Schwimmfarn-Art Salvinia molesta. Ihrer Haarenden sind in der Form eines Schneebesens miteinander verbunden. 

Mit diesen Erkenntnissen entwickeln die Wissenschaftler Nanofur weiter. Bislang befindet sich das Material im Prototypstadium. Die Forscher arbeiten auf eine großtechnische Fertigung zu. 

Blatt der Schwimmfarn-Art Salvinia molesta. Ihre Haarenden sind in der Form eines Schneebesens miteinander verbunden. Dadurch kann die Pflanze hervorragend Öl absorbieren. 

Blatt der Schwimmfarn-Art Salvinia molesta. Ihre Haarenden sind in der Form eines Schneebesens miteinander verbunden. Dadurch kann die Pflanze hervorragend Öl absorbieren. 

Foto: KIT

Nanofur könnte in Zukunft im Kampf gegen Ölkatastrophen zum Einsatz kommen. Hier besteht bislang folgendes Problem: Natürliche Materialien wie Sägemehl oder Pflanzenfasern sind wenig effektiv, weil sie große Mengen Wasser aufsaugen. Bakterien waren angesichts der Ölmenge überfordert. Und chemische Dispersionsmittel haben verheerende Folgen für die Umwelt, wie der Untergang der Ölplattform Deepwater Horizon am 20. April 2010 zeigte. 

Damals kam beim Versuch, 780 Millionen Liter Öl zu binden, das hochgiftige Bindemittel Corexitin zum Einsatz. Zwei Jahre nach der Katastrophe verendeten an dem eingesetzten Gift 16-mal so viele Delfine wie sonst in einem Jahrzehnt. 

Die Ölbohrinsel Deepwater Horizon war nach einer Explosion im April 2010 gesunken. Das Unglück führte zu einer verheerenden Ölpest im Golf von Mexiko.

Die Ölbohrinsel Deepwater Horizon war nach einer Explosion im April 2010 gesunken. Das Unglück führte zu einer verheerenden Ölpest im Golf von Mexiko.

Foto: U.S. Coast Guard

Von Patrick Schroeder Tags:
Das könnte sie auch interessieren

Top Stellenangebote

Hochschule Kaiserslautern-Firmenlogo
Hochschule Kaiserslautern Professur im Bereich Leistungselektronik und Elektronik (W2) Kaiserslautern
Hochschule Ostwestfalen-Lippe-Firmenlogo
Hochschule Ostwestfalen-Lippe W2-Professur Elektromechanik und Mechatronik Lemgo
Technische Universität Dresden-Firmenlogo
Technische Universität Dresden Professur (W3) für Luftfahrzeugtechnik Dresden
Fachhochschule Dortmund-Firmenlogo
Fachhochschule Dortmund Professorin / Professor für das Fach Medizintechnik Dortmund
Generalzolldirektion-Firmenlogo
Generalzolldirektion Diplomingenieur/in / Technische/r Beamtin/-er für das Funk- und Telekommunikationswesen Nürnberg
GULP Solution Services GmbH & Co. KG-Firmenlogo
GULP Solution Services GmbH & Co. KG Entwicklungsingenieur / Konstrukteur Röntgenstrahler (m/w) Hamburg
GULP Solution Services GmbH & Co. KG-Firmenlogo
GULP Solution Services GmbH & Co. KG Quality Assurance Engineer in der Röntgentechnik (m/w) Hamburg
HEMA Maschinen- und Apparateschutz GmbH-Firmenlogo
HEMA Maschinen- und Apparateschutz GmbH Entwicklungskonstrukteur (m/w) Seligenstadt
Deutsches Elektronen-Synchrotron DESY-Firmenlogo
Deutsches Elektronen-Synchrotron DESY Architektin (w/m) für den Forschungscampus DESY Hamburg
Duale Hochschule Gera-Eisenach-Firmenlogo
Duale Hochschule Gera-Eisenach Professur (W2) Engineering mit Schwerpunkt Produktentwicklung Eisenach
Zur Jobbörse